Skip to main content
Log in

Petrological-geophysical models of the internal structure of the lithospheric mantle of the Siberian Craton

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Based on the simultaneous inversion of unique ultralong-range seismic profiles Craton, Kimberlite, Meteorite, and Rift, sourced by peaceful nuclear and chemical explosions, and petrological and geochemical data on the composition of xenoliths of garnet peridotite and fertile primitive mantle material, the first reconstruction was obtained for the thermal state and density of the lithospheric mantle of the Siberian craton at depths of 100–300 km accounting for the effects of phase transformation, anharmonicity, and anelasticity. The upper mantle beneath Siberia is characterized by significant variations in seismic velocities, relief of seismic boundaries, degree of layering, and distribution of temperature and density. The mapping of the present-day lateral and vertical variations in the thermal state of the mantle showed that temperatures in the central part of the craton at depths of 100–200 km are somewhat lower than those at the periphery and 300–400°C lower than the mean temperature of tectonically younger mantle surrounding the craton. The temperature profiles derived from the seismic models lie between the 32.5 and 35 mW/m2 conductive geotherms, and the mantle heat flow was estimated as 11–17 mW/m2. The depth of the base of the cratonic thermal lithosphere (thermal boundary layer) is close to the 1450 ± 100°C isotherm at 300 ± 30 km, which is consistent with published heat flow, thermobarometry, and seismic tomography data. It was shown that the density distribution in the Siberian cratonic mantle cannot be described by a single homogeneous composition, either depleted or enriched. In addition to thermal anomalies, the mantle density heterogeneities must be related to variations in chemical composition with depth. This implies significant fertilization at depths greater than 180–200 km and is compatible with the existence of chemical stratification in the lithospheric mantle of the craton. In the asthenosphere-lithosphere transition zone, the craton root material is not very different in chemical composition, thermal regime, and density from the underlying asthenosphere. It was shown that minor variations in the chemical composition of the cratonic mantle and position of chemical (petrological) boundaries and the lithosphere-asthenosphere boundary cannot be reliably determined from the interpretation of seismic velocity models only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afonso, J.C., Fernandez, M., Ranalli, G., et al., Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: methodology and applications, Geochem. Geophys. Geosyst., 2008, vol. 9, no. 5, p. Q05008, doi:10.1029/2007GC001834.

    Article  Google Scholar 

  • Akashi, A., Nishihara, Y., Takahashi, E., et al., Orthoenstatite/clinoenstatite phase transformation in MgSiO3 at high-pressure and high-temperature determined by in situ X-ray diffraction: implications for nature of the X discontinuity, J. Geophys. Res., 2009, vol. 114, B04206, doi: 10.1029/2008JB005894.

    Article  Google Scholar 

  • Anderson, D.L., Theory of the Earth, Boston: Blackwell Sci. Publ., 1989.

    Google Scholar 

  • Arndt, N.T., Coltice, N., Helmstaedt, H., and Gregoire, M., Origin of Archean subcontinental lithospheric mantle: Some petrological constraints, Lithos, 2009, vol. 109, pp. 61–71.

    Article  Google Scholar 

  • Artemieva, I.M., The continental lithosphere: reconciling thermal, seismic, and petrologic data, Lithos, 2009, vol. 109, pp. 23–46.

    Article  Google Scholar 

  • Artemieva, I.M. and Mooney, W.D., Thermal thickness and evolution of Precambrian lithosphere: a global study, J. Geophys. Res., 2001, vol. 106, pp. 16387–16414.

    Article  Google Scholar 

  • Ashchepkov, I.V., Pokhilenko, N.P., Vladykin, N.V., et al., Structure and evolution of the lithospheric mantle beneath Siberian Craton, thermobarometric study, Tectonophysics, 2010, vol. 485, pp. 17–41.

    Article  Google Scholar 

  • Aulbach, S., Craton nucleation and formation of thick lithospheric roots, Lithos, 2012, vol. 149, pp. 16–30.

    Article  Google Scholar 

  • Bizzaro, M. and Stevenson, R.K., Major element composition of the lithospheric mantle under the North Atlantic Craton: evidence from peridotite xenoliths of the Sarfartoq area, southwestern Greenland, Contrib. Mineral. Petrol., 2003, vol. 146, pp. 223–240.

    Article  Google Scholar 

  • Bogatikov, O.A., Kovalenko, V.I., and Sharkov, E.V., Magmatizm, tektonika, geodinamika Zemli: Svyaz’ vo vremeni i v prostranstve (Magmatism, Tectonics, and Geodynamics of the Earth: Spatiotemporal Relation), Moscow: Nauka, 2010.

    Google Scholar 

  • Boyd, F.R., Pokhilenko, N.P., Pearson, D.G., et al., Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths, Contrib. Mineral. Petrol., 1997, vol. 128, pp. 228–246.

    Article  Google Scholar 

  • Burmin, V.Yu., Distribution of density and elastic parameters in the Earth, Fiz. Zemli, 2006, no. 7, pp. 76–88.

    Google Scholar 

  • Bushenkova, N., Tychkov, S., and Koulakov, I., Tomography on PP-P waves and its application for investigation of the upper mantle in central Siberia, Tectonophysics, 2002, vol. 358, pp. 57–76.

    Article  Google Scholar 

  • Cammarano, F., Goes, S., Vacher, P., and Giardini, D., Inferring upper-mantle temperatures from seismic velocities, Phys. Earth Planet. Inter., 2003, vol. 138, pp. 197–222.

    Article  Google Scholar 

  • Cammarano, F., Romanowicz, B., Stixrude, L., et al., Inferring the thermochemical structure of the upper mantle from seismic data, Geophys. J. Int., 2009, vol. 179, pp. 1169–1185.

    Article  Google Scholar 

  • Cobden, L., Goes, S., Cammarano, F., and Connolly, J.A.D., Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity, Geophys. J. Int., 2008, vol. 175, pp. 627–648.

    Article  Google Scholar 

  • Dalton, C.A. and Faul, U.H., The oceanic and cratonic upper mantle: clues from joint interpretation of global velocity and attenuation models, Lithos, 2010, vol. 120, pp. 160–172.

    Article  Google Scholar 

  • Deen, T.J., Griffin, W.L., Begg, G., et al., Thermal and compositional structure of the subcontinental lithospheric mantle: derivation from shear wave seismic tomography, Geochem. Geophys. Geosyst., 2006, vol. 7, Q07003. doi: 10.1029/2005GC001120.

    Article  Google Scholar 

  • Dobretsov, N.L., Global geodynamic evolution of the Earth and global geodynamic models, Russ. Geol. Geophys., 2010, vol. 51, no. 6, pp. 592–610.

    Article  Google Scholar 

  • Duchkov, A.D. and Sokolova, L.S., Thermal structure of the lithosphere of the Siberian Platform, Geol. Geofiz., 1997, vol. 38, no. 2, pp. 494–503.

    Google Scholar 

  • Dziewonski A.M., Anderson D.L. Preliminary reference Earth model, Phys. Earth Planet. Inter., 1981, vol. 25, pp. 297–358.

    Article  Google Scholar 

  • Eaton, D.W., Darbyshire, F., Evans, R.L., et al., The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons, Lithos, 2009, vol. 109, pp. 1–22.

    Article  Google Scholar 

  • Egorkin, A.V., Study of mantle across superlong geotraverses, Fiz. Zemli, 1999, no. 7–8, pp. 114–130.

    Google Scholar 

  • Egorkin, A.V., Upper mantle structure below the Daldyn-Alakitsk kimberlite field by nuclear explosion seismograms, Geol. Ore Dep., 2001, vol. 43, no. 1, pp. 19–32.

    Google Scholar 

  • Egorkin, A.V., Mantle structure below the Siberian Platform, Fiz. Zemli, 2004, no. 5, pp. 37–46.

    Google Scholar 

  • Egorkin, A.V. and Chernyshov, N.M., Peculiarities of mantle waves from long-range profiles, J. Geophys., 1983, vol. 54, pp. 30–34.

    Google Scholar 

  • Egorkin, A.V., Kun, V.V., and Chernyshev, N.M., Absorption of P- and S-waves in the crust and upper mantle of the Western Siberian Plate and Siberian Platform, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1981, no. 2, pp. 37–50.

    Google Scholar 

  • Every, A.G., General closed-form expression for acoustic waves in elastically anisotropic solids, Phys. Rev. B: 1980, vol. 22, pp. 1746–1760.

    Article  Google Scholar 

  • Fabrichnaya, O.B. and Kuskov, O.L., Constitution of the mantle. 1. Phase relations in the FeO-MgO-SiO2 system at 10–30 GPa, Phys. Earth Planet. Inter., 1991, vol. 69, pp. 56–71.

    Article  Google Scholar 

  • Fabrichnaya, O.B. and Kuskov, O.L., Constitution of the Moon: 1. Assessment of thermodynamic properties and reliability of phase relation calculations in the FeO-MgO-Al2O3-SiO2 system, Phys. Earth Planet. Inter., 1994, vol. 83, pp. 175–196.

    Article  Google Scholar 

  • Forte, A.M. and Perry, H.K.C., Geodynamic evidence for a chemically depleted continental tectosphere, Science, 2000, vol. 290, pp. 1940–1944.

    Article  Google Scholar 

  • Fuchs, K., Upper Mantle Heterogeneities from Active and Passive Seismology, NATO ASI Series (Kluwer, Dordrecht-Boston-London, 1997), Vol. 17.

    Book  Google Scholar 

  • Gaul, O.F., Griffin, W.L., O’Reilly, S.Y., and Pearson, N.J., Mapping olivine composition in the lithospheric mantle, Earth Planet. Sci. Lett., 2000, vol. 182, pp. 223–235.

    Article  Google Scholar 

  • Glebovitskii, V.A., Nikitina, L.P., and Khil’tova, V.Ya., Thermal state of mantle underlying Precambrian and Phanerozoic structures: Evidence from garnet-orthopyroxene thermobarometry of xenoliths of garnet peridotites and alkali basalts, Fiz. Zemli, 2001, no. 3, pp. 3–25.

    Google Scholar 

  • Goes, S., Govers, R., and Vacher, P., Shallow mantle temperatures under Europe from P- and S-wave tomography, J. Geophys. Res., 2000, vol. 105B, pp. 11153–11169.

    Article  Google Scholar 

  • Goncharov, A.G., Redox state of continental lithospheric mantle: Fe3+/ΣFe of minerals from mantle xenoliths determined by Mössbauer spectroscopy, Extended Abstract of Cand. Sci. (Geol.-Min.) Dissertation, St. Petersburg: Inst. Geol. Geokhronol. Dokembriya RAN, 2012.

    Google Scholar 

  • Grachev, A.F. and Kaban, M.K., Factors responsible for the high position of the Siberian Platform, Izv., Phys. Solid Earh, 2006, vol. 42, no. 12, pp. 987–998.

    Article  Google Scholar 

  • Griffin, W.L., Kaminsky, F.V., Ryan, C.G., et al., Thermal state and composition of the lithospheric mantle beneath the Daldyn kimberlite field, Yakutia, Tectonophysics, 1996, vol. 262, pp. 19–33.

    Article  Google Scholar 

  • Griffin, W.L., O’Reilly, S.Y., Abe, N., et al., The origin and evolution of Archean lithospheric mantle, Precambrian Res., 2003, vol. 127, pp. 19–41.

    Article  Google Scholar 

  • Gung, Y., Panning, M., and Romanowicz, B., Global anisotropy and the thickness of continents, Nature, 2003, vol. 422, pp. 707–711.

    Article  Google Scholar 

  • Hemingway B.S., Bohlen S.R., Hankins W.B. et al. Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary, Am. Mineral., 1998, vol. 83, pp. 409–418.

    Google Scholar 

  • Hirschmann, M.M., Mantle solidus: experimental constraint and the effects of peridotite composition, Geochem. Geophys. Geosyst, 2000, vol. 1, No. 2000GC000070.

  • Ionov, D.A., Doucet, L.S., and Ashchepkov, I.V., Composition of the lithospheric mantle in the Siberian Craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite, J. Petrol., 2010, vol. 51, pp. 2177–2210.

    Article  Google Scholar 

  • James, D.E., Boyd, F.R., Schutt, D., Bell, D.R., and Carlson, R.W. Xenolith constraints on seismic velocities in the upper mantle beneath southern Africa, Geochem. Geophys. Geosyst., 2004, vol. 5. doi: 10.1029/2003GC000551.

  • Jones, A.G., Evans, R.L., and Eaton, D.W., Velocity-conductivity relationships for mantle mineral assemblages in Archean cratonic lithosphere based on a review of laboratory data and Hashin-Shtrikman extremal bounds, Lithos, 2009, vol. 109, pp. 131–143.

    Article  Google Scholar 

  • Jordan, T.H., Composition and development of the continental tectosphere, Nature, 1978, vol. 274, pp. 544–548.

    Article  Google Scholar 

  • Kalinin, V.A., Equation determining density change with depth in heterogeneous Earth, Izv. Akad. Nauk SSSR, Fiz. Zem., 1972, no. 3, pp. 3–10.

    Google Scholar 

  • Katsura, T., Yoneda, A., Yamazaki, D., et al., Adiabatic temperature profile in the mantle, Phys. Earth Planet. Inter., 2010, vol. 183, pp. 212–218.

    Article  Google Scholar 

  • Kennett, B.L.N., Engdahl, E.R., and Buland, R., Constraints on seismic velocities in the Earth from travel times, Geophys. J. Int., 1995, vol. 122, pp. 108–124.

    Article  Google Scholar 

  • Khan, A., Zunino, A., and Deschamps, F., The thermochemical and physical structure beneath the North American continent from Bayesian inversion of surface-wave phase velocities, J. Geophys. Res., 2011, vol. 116, B09304. doi: 10.1029/2011JB008380.

    Google Scholar 

  • King, S.D., Archean cratons and mantle dynamics, Earth Planet. Sci. Lett., 2005, vol. 234, pp. 1–14.

    Article  Google Scholar 

  • Kobussen, A.F., Christensen, N.I., and Thybo, H., Constraints on seismic velocity anomalies beneath the Siberian Craton from xenoliths and petrophysics, Tectonophysics, 2006, vol. 425, pp. 123–135.

    Article  Google Scholar 

  • Kopylova, M.G. and Russell, J.K., Chemical stratification of cratonic lithosphere: constraints from the Northern Slave Craton, Canada, Earth Planet. Sci. Lett., 2000, vol. 181, pp. 71–87.

    Article  Google Scholar 

  • Kronrod, V.A. and Kuskov, O.L., Determining heat flows and radiogenic heat generation in the crust and lithosphere based on seismic data and surface heat flows, Geochem. Int., 2006, vol. 44, no. 10, pp. 1035–1040.

    Article  Google Scholar 

  • Kronrod, V.A. and Kuskov, O.L., Modeling of the thermal structure of continental lithosphere, Izv., Phys. Solid Earth, 2007, no. 43, pp. 91–101.

    Google Scholar 

  • Kuskov, O.L., Constitution of the Moon: 4. Composition of the mantle from seismic data, Phys. Earth Planet. Inter., 1997, vol. 102, pp. 239–257.

    Article  Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Determining the temperature of the Earth’s continental upper mantle from geochemical and seismic data, Geochem. Int., 2006, vol. 44, pp. 232–248.

    Article  Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Composition, temperature, and thickness of the lithosphere beneath the Archean Kaapvaal Craton, Izv. Phys. Solid Earth, 2007, no. 43, pp. 42–62.

    Google Scholar 

  • Kuskov, O.L. and Panferov, A.B., Phase diagrams of the FeO-MgO-SiO2 system and the structure of the mantle discontinuities, Phys. Chem. Mineral., 1991, vol. 17, pp. 642–653.

    Article  Google Scholar 

  • Kuskov, O.L., Kronrod, V.A., and Annersten, H., Inferring upper-mantle temperatures from seismic and geochemical constraints: implications for Kaapvaal Craton, Earth Planet. Sci. Lett., 2006, vol. 244, pp. 133–154.

    Article  Google Scholar 

  • Kuskov, O.L., Dorofeeva, V.A., Kronrod, V.A., and Makalkin, A.B., The Systems of Jupiter and Saturn: Formation, Composition and Internal Structure of Large Satellites, Moscow: LKI, 2009.

    Google Scholar 

  • Kuskov, O.L., Kronrod, V.A., and Prokof’ev, A.A., Thermal structure and thickness of the lithospheric mantle underlying the Siberian Craton from the Craton and Kimberlite superlong seismic profiles, Izv., Phys. Solid Earth, 2011, no. 47, pp. 155–175.

    Google Scholar 

  • Lee, C.-T.A., Geochemical/petrologic constraints on the origin of cratonic mantle, in Archean Geodynamics and Environment, Benn, K., Mareschal, J.-C., and Condie, K.C., Eds., Am. Geophys. Union, Geophys. Monograph. Ser., 2006, vol. 164, pp. 89–114.

    Article  Google Scholar 

  • Lee, C.-T.A. and Rudnick, R.L., Compositionally stratified cratonic lithosphere: petrology and geochemistry of peridotite xenolihs from the Labait volcano, Tanzania, in Proceedings of 7th International Kimberlite Conference, Gurney, J.J., Gurney, J.L., Pascoe, M.D., and Richardson, S.H., Eds., Cape Twon: Ref Roof Design, 1999, pp. 503–521.

    Google Scholar 

  • Mainprice, D., Seismic anisotropy of the deep Earth from a mineral and rock physics perspective, Treatise Geophys., 2007, vol. 2, pp. 437–491.

    Article  Google Scholar 

  • McDonough, W.F., Constraints on the composition of the continental lithospheric mantle, Earth Planet. Sci. Lett., 1990, vol. 101, pp. 1–18.

    Article  Google Scholar 

  • Mooney, W.D. and Vidale, J.E., Thermal and chemical variations in subcrustal cratonic lithosphere: evidence from crustal isostasy, Lithos, 2003, vol. 71, pp. 185–193.

    Article  Google Scholar 

  • Niu, F., Levander, A., Cooper, C.M., et al., Seismic constraints on the depth and composition of the mantle keel beneath the Kaapvaal craton, Earth Planet. Sci. Lett., 2004, vol. 224, pp. 337–346.

    Article  Google Scholar 

  • O’Reilly, S.Y. and Griffin, W.L., The continental lithosphere-asthenosphere boundary: can we sample it?, Lithos, 2010, vol. 120, pp. 1–13.

    Article  Google Scholar 

  • Oreshin, S., Vinnik, L., Makeyeva, L., et al., Combined analysis of SKS splitting and regional P traveltimes in Siberia, Geophys. J. Int., 2002, vol. 151, pp. 393–402.

    Article  Google Scholar 

  • Pavlenkova, N.I., Long-range profile data on the uppermantle structure in the Siberian Craton, Russ. Geol. Geophys., 2006, vol. 47, no. 5, pp. 626–641.

    Google Scholar 

  • Pavlenkova, N.I., Rheological properties of the upper mantle of Northern Eurasia and nature of regional boundaries according to the data of long-range seismic profiles, Russ. Geol. Geophys., 2011, vol. 52, pp. 1016–1027.

    Article  Google Scholar 

  • Pavlenkova, N.I., Seismic structure of the upper mantle along the long-range PNE profiles-rheological implication, Tectonophysics, 2011, vol. 508, pp. 85–95.

    Article  Google Scholar 

  • Pavlenkova, G.A. and Pavlenkova, N.I., Upper mantle structure of the Northern Eurasia from peaceful nuclear explosion data, Tectonophysics, 2006, vol. 416, pp. 33–52.

    Article  Google Scholar 

  • Pearson, D.G. and Wittig, N., Formation of Archaean continental lithosphere and its diamonds: the root of the problem, J. Geol. Soc., 2008, vol. 165, pp. 895–914.

    Article  Google Scholar 

  • Poudjom Djomani Y.H., O’Reilly, S.Y., Griffin, W.L., and Morgan, P., The density structure of subcontinental lithosphere through time, Earth Planet. Sci. Lett., 2001, vol. 184, pp. 605–621.

    Article  Google Scholar 

  • Rosen, O.M., Solov’ev, A.V., and Zhuravlev, D.Z., Thermal evolution of the northeastern Siberian Platform in the light of apatite fission-track dating of the deep drill core, Izv., Phys, Solid Earth, 2009, vol. 45, no. 10, pp. 914–931.

    Article  Google Scholar 

  • Rosen, O.M., Manakov, A.V., and Zinchuk, N.N., Sibirskii kraton: formirovanie, almazonosnost’ (Siberian Craton: Formation and Diamond Potential), Moscow: Nauchnyi mir, 2006.

    Google Scholar 

  • Rudnick, R.L., McDonough, W.F., and O’Connell, R.J., Thermal structure, thickness and composition of continental lithosphere, Chem. Geol., 1998, vol. 145, pp. 395–411.

    Article  Google Scholar 

  • Shimizu, N., Pokhilenko, N.P., Boyd, F.R., and Pearson, D.G., Geochemical characteristics of mantle xenoliths from the Udachnaya kimberlite pipe, Russ. Geol. Geophys., 1997, vol. 38, pp. 205–217.

    Google Scholar 

  • Sobolev, N.V., Glubinnye vklyucheniya v kimberlitakh i problema sostava verkhnei mantii (Deep-Seated Inclusions in Kimberlites and Composition of the Upper Mantle), Novosibirsk: Nauka, 1974.

    Google Scholar 

  • Sobolev, S.V., Zeyen, H., Stoll, G., et al., Upper mantle temperatures from teleseismic tomography of French Massif Central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt, Earth Planet. Sci. Lett., 1996, vol. 139, pp. 147–163.

    Article  Google Scholar 

  • Solov’eva, L.V., Vladimirov, B.M., Dneprovskaya, L.V., et al., Kimberlity i kimberlitopodobnye porody. Veshchestvo verkhnei mantii pod drevnimi platformami (Kimberlites and Kimberlite-Like Rocks: Upper Mantle Substance beneath Ancient Platforms), Novosibirsk: Nauka, 1994.

    Google Scholar 

  • Stixrude, L. and Lithgow-Bertelloni, C., Thermodynamics of mantle minerals-II. Phase equilibria, Geophys. J. Int., 2011, vol. 184, pp. 1180–1213.

    Article  Google Scholar 

  • Suvorov, V.D., Mishen’kina, Z.R., and Mel’nik, E.A., Upper mantle roots of Siberian Craton basement structures along the rift DSS profile, Russ. Geol. Geofiz., 2010, vol. 51, no. 8, pp. 885–897.

    Article  Google Scholar 

  • Tsvetcova, T., Shumlyanskaya, L., Zaiets, L., and Bugaienko, I., Seismic tomography of Eurasia, International Conference Geodynamic Phenomena: From Field, Observational, Seismologial, Rheological Perspectives, Russia, Suzdal, Suzdal, 2009, pp. 151–154.

    Google Scholar 

  • Ukhanov, A.V., Ryabchikov, I.D., and Khar’kiv, A.D., Litosfernaya mantiya Yakutskoi kimberlitovoi provintsii (Lithospheric Mantle of the Yakutiam Kimberlite Province), Moscow: Nauka, 1988.

    Google Scholar 

  • Yanovskaya, T.B. and Kozhevnikov, V.M., Upper mantle anisotropy beneath the Asian continent from group velocities of Rayleigh and Love waves, Russ. Geol. Geophys., 2006, vol. 47, pp. 618–625.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Kuskov.

Additional information

Original Russian Text © O.L. Kuskov, V.A. Kronrod, A.A. Prokof’ev, N.I. Pavlenkova, 2014, published in Petrologiya, 2014, Vol. 22, No. 1, pp. 21–49.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuskov, O.L., Kronrod, V.A., Prokof’ev, A.A. et al. Petrological-geophysical models of the internal structure of the lithospheric mantle of the Siberian Craton. Petrology 22, 17–44 (2014). https://doi.org/10.1134/S0869591114010056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591114010056

Keywords

Navigation