Skip to main content
Log in

Extremely ferrous fayalite and hedenbergite from metalliferous quartzite in the Black Shale Formation in the Southern Urals

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper reports data on the inner structure and composition of fine-grained fayalite-hedenbergite hydrothermal-metasomatic veinlet in unusual quartzite (so-called kluchevite) in the Black Shale Formation in the Southern Urals. The fayalite and hedenbergite are the most ferrous among these minerals ever found worldwide, and their compositions extend to the ferrous end members. The minerals are devoid of Mg but contain variable Zn concentrations. The groundmass of the rock is very fine-grained and bears fayalite-hedenbergite symplectites with a minor amount of barite. The composition of fayalite in the minute phenocrysts is close to the composition of the mineral in the symplectites. Both fayalite varieties contain variable but always high ZnO concentrations (0.40–3.70 wt %). The hedenbergite exhibits analogous compositional features. Zn-bearing magnetite grains were found near these minerals, along with a number of varieties of pyrrhotite, covellite, and other Cu sulfides. Judging by its morphological features and texture, the rock is of hydrothermal genesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Capitani, G.C. and Mellini, M., The johannsenite-hedenbergite complete solid solution: clinopyroxenes from the Campiglia Marittima skarn, Eur. J. Mineral., 2000, vol. 12, pp. 1215–1227.

    Google Scholar 

  • Chesnokov, B.V. and Shcherbakova, E.P., Mineralogiya gorelykh otvalov Chelyabinskogo ugol’nogo basseina (opyt mineralogii tekhnogeneza) (Mineralogy of Burnt Wastes at the Chelyabinsk Coal Basin: A Casse Study of Technogenic Mineralogy), Moscow: Nauka, 1991.

    Google Scholar 

  • Damman, A.H. and Kieft, C., W-Mo polymetallic mineralization and associated calc-silicate in the Cåsborn area, West Bergslagen, Central Sweden, Can. Mineral., 1990, vol. 28, pp. 17–36.

    Google Scholar 

  • Deer, W.A., Howie, R.A., and Zussman, J., Rock-forming minerals. Volume 2. Chain silicates, London: Longman, 1963.

    Google Scholar 

  • Dobretsov, N.L., Kochkin, Yu.N., Krivenko, A.P., and Kutolin, V.A., Porodoobrazuyushchie pirokseny (Rock-Forming Pyroxenes), Moscow: Nauka, 1971.

    Google Scholar 

  • Ericsson, T. and Filippidis, A., Cation ordering in the limited solid solution Fe2SiO4-Zn2SiO4, Am. Mineral., 1986, vol. 71, pp. 1502–1509.

    Google Scholar 

  • Floran, R.J. and Papike, J.J., Mineralogy and petrology of the gunflint iron formation, Minnesota-Ontario: correlation of compositional and assemblage variations at low to moderate grade, J. Petrol., 1978, vol. 19, pp. 215–288.

    Article  Google Scholar 

  • Frondel, J.W., Lunar Mineralogy, New York: J. Wiley and Sons, 1975.

    Google Scholar 

  • Godovikov, A.A., Mineralogiya. Izdanie 2-e (Mineralogy. 2nd Edition), Moscow: Nedra, 1983.

    Google Scholar 

  • Gole, M.J., A banded iron-formation assemblage containing clinopyroxene, andradite, babingtonite, and cronstedtite, Mineral. Mag., 1982, vol. 46, pp. 127–130.

    Article  Google Scholar 

  • Hutchinson, M.N. and Scott, S.D., Sphalerite geobarometry in the Cu-Fe-Zn-S system, Econ. Geol., 1981, vol. 76, pp. 143–153.

    Article  Google Scholar 

  • Ike, E.C., Bowden, P., and Martin, R.F., Fayalite and clinopyroxene in the porphyries of the Tibchi anorogenic ringcomplex, Nigeria: postmagmatic initiation of a peralkaline trend, Can. Mineral., 1984, vol. 22, pp. 401–409.

    Google Scholar 

  • Kobyashev, Yu.S. and Nikandrov, S.N., Mineraly Urala (mineral’nye vidy i raznovidnosti) (Minerals of the Urals: Mineral Species and Varieties), Yekaterinburg: Kvadrat, 2007.

    Google Scholar 

  • Korinevsky, V.G., Korinevsky, E.V., Kotlyarov, V.A., and Churin, E.I., Unusual vanadium minerals from the Urals, in Ural’skii mineralogicheskii sbornik (Uralian Mineralogical Book), Miass: IMin UrO RAN, 2002, no. 12, pp. 18–26.

    Google Scholar 

  • Korinevsky, V.G., Unusual hedenbergite gabbro from the Ilmeny Mountains, Southern Urals, Litosfera, 2008, no. 1, pp. 133–139.

    Google Scholar 

  • Korinevsky, V.G. and Kotlyarov, V.A., Mineral diversity of klyuchevites, in Ural’skii mineralogicheskii sbornik. no. 17. Miass-Yekaterinburg (Uralian Mineralogical Book), Yekaterinburg: UrO RAN, 2010, no. 17, pp. 77–102.

    Google Scholar 

  • Korinevsky, V.G., Occurrence of iron-manganese mineralization in a Silurian carbonaceous-siliceous sequence in the Chelyabinsk district, Urals, in Metallogeniya drevnikh i sovremennykh okeanov-2011. Rudonosnost’ osadochnovulkanogennykh i giperbazitovykh kompleksov. Nauchnoe izdanie (Metallogeny of Ancient and Modern Oceans-2011. Ore Potential of Sedimentary-Volcanogenic and Ultramafic Complexes), Miass: IMin UrO RAN, 2011.

    Google Scholar 

  • Korinevsky, V.G., Zn, Cu-bearing pyrrhotite from klyuchevites of the Southern Urals, Zap. Ross. Mineral. O-va, 2011a, no. 3, pp. 78–82.

    Google Scholar 

  • Larsen, L.M., Clinopyroxenes and coexisting mafic minerals from the alkaline Ilimaussaq intrusion, South Greenland, J. Petrol., 1976, vol. 17, pp. 258–290.

    Article  Google Scholar 

  • Lattard, D. and Evans, D.W., New experiments on stability of grunerite, Eur. J. Sci., 1992, vol. 4, pp. 219–238.

    Google Scholar 

  • Lennykh, V.I. and Petrov, V.I., Eulysites, magnetite-hypersthene rocks, and magnetite quartzites of the Southern Urals, in Petrologiya i zhelezorudnye mestorozhdeniya Taratashskogo kompleksa (Petrology and Iron Ore Deposits of the Taratash Complex), Sverdlovsk: UNTs AN SSSR, 1978, pp. 119–136.

    Google Scholar 

  • Lottermoser, B.G., Mobilization of heavy metals from historical smelting slag dumps, North Queensland, Australia, Mineral. Mag., 2002, vol. 66, no. 4, pp. 475–490.

    Article  Google Scholar 

  • Mineraly. Spravochnik. T. III. Vyp. I. Mineraly s odinochnymi i sdvoennymi kremnekislorodnymi tetraedrami (Minerals. A Handbook. Vol. 3. Minerals with Single and Paired Silica-Oxygen Tetrahedra), Moscow: Nauka, 1972, p. 883.

  • Mineraly. Spravochnik. T. III. Vyp. II (Minerals. A Handbook. Vol. 3. No. 2), Moscow: Nauka, 1981, p. 614.

  • Miyano, T. and Beukes, N.J., Mineralogy and petrology of the contact metamorphosed amphibole asbestos-bearing Penge iron formation, eastern Transvaal, South Africa, J. Petrol., 1997, vol. 38, pp. 651–676.

    Article  Google Scholar 

  • Morkovkina, V.F., Khimicheskie analizy izverzhennykh gornykh porod i porodoobrazuyushchikh mineralov (Chemical Analysis of Igneous Rocks and Rock-Forming Minerals), Moscow: Nauka, 1964.

    Google Scholar 

  • Nakano, T., An antipathetic relation between the hedenbergite and johannsenite components in skarn clinopyroxene from the Kagata tungsten deposit, central Japan, Can. Mineral., 1991, vol. 29, pp. 427–434.

    Google Scholar 

  • Novikova, S.A., Fayalite from ferruginous paralavas of ancient coal fires in the Kuznetsk Basin, Zap. Ross. Mineral. O-va, 2009, no. 1, pp. 91–104.

    Google Scholar 

  • Perchuk, L.L., Derivation of thermodynamically consistent system of geothermometers and geobarometers for metamorphic and magmatic rocks, in Progress in Metamorphic and Magmatic Petrology, Perchuk, L.L., Ed., Cambridge: University Press, 1990, pp. 93–112.

    Google Scholar 

  • Pringle, I.C., An occurrence of hydrothermal fayalite in the epicrustal rocks of the Bushveld igneous complex, Mineral. Mag., 1975, vol. 40, pp. 418–419.

    Article  Google Scholar 

  • Rasmussen, M.G., Evans, B.W., and Kuehner, S.M., Lowtemperature fayalite, greenalite, and minnesotaite from the Overlook gold deposit, Washington: phase relations in the system FeO-SiO2-H2O, Can. Mineral., 1998, vol. 36, pp. 147–162.

    Google Scholar 

  • Sharygin, V.V., Sokol, E.V., and Belakovskii, D.I., Fayalitesekaninaite paralava from the Ravat coal fire (central Tajikistan), Russ. Geol. Geophys., 2009, vol. 50, no. 8, pp. 695–713.

    Article  Google Scholar 

  • Shi, P., Fluid fugacities and phase equilibria in the Fe-Si-O-H-S system, Am. Mineral., 1992, vol. 77, pp. 1050–1066.

    Google Scholar 

  • Snachev, A.V., Puchkov, V.N., Savel’ev, D.E., and Snachev, V.I., Geologiya Aramil’sko-Sukhtelinskoi zony Urala (Geology of the Aramil-Sukhtelin Zone in the Urals), Ufa: Dizain Poligraf Servis, 2006.

    Google Scholar 

  • Wager, L.R. and Brown, G.M., Layered igneous rocks, Edinburgh-London: Oliver and Boyd, 1968.

    Google Scholar 

  • Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  • Young, D.A. and Cuthbertson, J., A new ferrosilite and Fepigeonite occurrence in the Reading Prong, New Jersey, USA, Lithos, 1994, vol. 31, pp. 163–176.

    Article  Google Scholar 

  • Yushkin, N.P., Ivanov, O.K., and Popov, V.A., Vvedenie v topomineralogiyu Urala (Introduction into the Topomineralogy of the Urals), Moscow: Nauka, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Korinevsky.

Additional information

Original Russian Text © V.G. Korinevsky, 2014, published in Petrologiya, 2014, Vol. 22, No. 1, pp. 85–97.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korinevsky, V.G. Extremely ferrous fayalite and hedenbergite from metalliferous quartzite in the Black Shale Formation in the Southern Urals. Petrology 22, 77–89 (2014). https://doi.org/10.1134/S0869591114010044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591114010044

Keywords

Navigation