Skip to main content

U-Pb zircon dating of the lunar meteorite Dhofar 1442

Abstract

Dhofar 1442 is one of the few lunar KREEP-rich meteorites, which contains KREEP norites and KREEP gabbronorite as well as low-Ti basalts and highly evolved granophyres. Zircon is a typical accessory mineral of KREEP rocks. U-Th-Pb dates of 12 zircon grains (four of them were in two lithic clasts, and the others were fragments in the meteorite matrix) indicate that the zircons belong to at least two groups of different age: “ancient” (∼4.31 Ga) and “young” (∼3.95 Ga), which correspond to two major pulses of KREEP magmatism in the source region of the Dhofar 1442 meteorite. The zircon of the “young” group was most probably related to the crater ejecta of the Mare Imbrium Basin. The rock fragments dated at approximately 3.95 Ga have the composition of KREEP gabbronorite. The parental rocks of the zircon of the “ancient” group in the Dhofar 1442 meteorite are uncertain and could be highly evolved granophyres. This hypothesis is supported by the high Th (100–300 ppm) and U (150–400 ppm) contents. These zircon fragments of the “ancient” group, higher than in the “young” group (<50 ppm Th and <70 ppm U) and are typical of zircon from lunar granitic rocks. The composition of the products of KREEP magmatism in the source region of the Dhofar 1442 meteorite could vary from predominantly granitic to KREEP gabbronoritic at 4.3–3.9 Ga.

This is a preview of subscription content, access via your institution.

References

  • Arai, T., Yoshitake, M., Tomiyama, T., et al., Support for a prolonged KREEP magmatism: U-Pb age dating of zircon and baddeleyite in lunar meteorite NWA 4485, Lunar Planet. Sci., 2010, vol. 41, #2379.pdf.

  • Borg, L.E., Connelly, J.N., Boyet, M., and Carlson, R.W., Chronological evidence that the Moon is either young or did not have a global magma ocean, Nature, 2011, vol. 477, pp. 70–72. doi:10.1038/nature10328.

    Article  Google Scholar 

  • Corfu, F., A century of U-Pb geochronology: the long quest towards concordance, Geol. Soc. Am. Bull., 2013, vol. 125, nos. 1-2, pp. 33–47.

    Article  Google Scholar 

  • Demidova, S.I., Nazarov, M.A., Anosova, M.O., et al., U-Pb dating of zircons from the Dhofar 1442 lunar meteorite, Lunar Planet. Sci., 2012a, vol. 43, #1090.pdf.

  • Demidova, S.I., Nazarov, M.A., Lorents, K.A., et al., Chemical composition of lunar meteorites and the lunar crust, Petrology, 2007, vol. 15, no. 4, pp. 386–407.

    Article  Google Scholar 

  • Demidova, S.I., Nazarov, M.A., Anosova, M.O., et al., Petrography and an age of KREEP gabbro-noritic clasts in the Dhofar 1442 lunar meteorite, Eur. Lunar Symp., 2012b, pp. 23–24.

    Google Scholar 

  • Gibson, R.L., Armstrong, R.A., and Reimold, W.U., The age and thermal evolution of the Vredefort impact structure, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 1531–1540.

    Article  Google Scholar 

  • Glotch, T.D., Lucey, P.G., Bandfield, J.L., et al., Highly silicic compositions on the Moon, Science, 2010, vol. 329, pp. 1510–1513.

    Article  Google Scholar 

  • Gnos, E., Hofmann, B.A., Al-Kathiri, A., et al., Pinpointing the source of a lunar meteorite: implications for the evolution of the Moon, Science, 2004, vol. 305, pp. 657–659.

    Article  Google Scholar 

  • Grange, M.L., Pidgeon, R.T., Nemchin, A.A., et al., Interpreting U-Pb data from primary and secondary features in lunar zircon, Geochim. Cosmochim. Acta, 2013, vol. 101, pp. 112–132.

    Article  Google Scholar 

  • Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology, Chem. Geol., 2004, vol. 211, pp. 47–69.

    Article  Google Scholar 

  • Jolliff, B.L., Tran, T.N., Lawrence, S.J., et al., ComptonBelkovich: nonmare, silicic volcanism on the Moon’s far side, Lunar Planet. Sci., 2011, vol. 42, # 2224.

    Google Scholar 

  • Korotev, R.L., Lunar geochemistry as told by lunar meteorites, Chemie der Erde, 2005, vol. 65, pp. 297–346.

    Article  Google Scholar 

  • Korotev, R.L., Zeigler, R.A., Jolliff, B.L., et al., Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron composition, Meteorit. Planet. Sci., 2009, vol. 44, pp. 1287–1322.

    Article  Google Scholar 

  • Korotev, R.L., Lunar meteorites from Oman, Meteorit. Planet. Sci., 2012, vol. 47, pp. 1365–1402.

    Article  Google Scholar 

  • Kostitsyn, Yu.A. and Anosova, M.O., U-Pb age of extrusive rocks in the Uxichan Caldera, Sredinnyi Range, Kamchatka: application of laser ablation in dating young zircons, Geochem. Int., 2013, vol. 51, no. 2, pp. 155–163.

    Article  Google Scholar 

  • Lawrence, D.J., Feldman, W.C., Barraclough, B.L., et al., High resolution measurements of absolute thorium abundances on the lunar surface, Geophys. Rev. Lett., 1999, vol. 26, no. 17, pp. 2681–2685.

    Article  Google Scholar 

  • Lawrence, D.J., Feldman, W.C., Barraclough, B.L., et al., Thorium abundances on the lunar surface, J. Geophys. Res., 2000, vol. 105, no. E8, pp. 20307–20331.

    Article  Google Scholar 

  • Leont’eva, E.M., Matukov, D.I., Nazarov, M.A., et al., First determination of the isotopic age of a lunar meteorite by the uranium-lead zircon method, Petrology, 2005, vol. 13, no. 2, pp. 193–196.

    Google Scholar 

  • Liu, D., Jolliff, B.L., Zeigler, R.A., et al., A 3.91 billion year age for Apollo 12 high-thorium impact-melt breccias: products of Imbrium, or and older impact basin in the Procellarum KREEP terrane?, Lunar Planet. Sci., 2010, vol. 41, #2477pdf.

    Google Scholar 

  • Liu, D., Wan, Y., Zhang, Y., et al., Age of zircons in the impact-melt breccia in SaU 169 lunar meteorite: Beijing SHRIMP II study, Lunar Planet. Sci., 2009, vol. 40, #2499.pdf.

  • Liu, D., Jolliff, B.L., Zeigler, R.A., et al., Comparative zircon U-Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact, Earth Planet. Sci. Lett., 2012, vol. 319–320, pp. 277–286.

    Article  Google Scholar 

  • Marvin, U.B., Lindstrom, M.M., Holmberg, B.B., and Martinez, R.R., New observations on the quartz monzodiorite-granite suite, Proc. Lunar Planet. Sci., 1991, vol. 21, pp. 119–135.

    Google Scholar 

  • McFarlane, C.R.M., Connelly, J.N., and Carlson, W.D., Intracrystalline redistribution of Pb in zircon during hightemperature metamorphism, Chem. Geol., 2005, vol. 217, pp. 1–28.

    Article  Google Scholar 

  • Meyer, C., Williams, I.S., and Compston, W., Uraniumlead ages for lunar zircons: evidence for a prolonged period of granophyre formation from 4.32 to 3.88, Meteorit. Planet. Sci., 1996, vol. 31, pp. 370–387.

    Article  Google Scholar 

  • Neal, C.R., Taylor, L.A., Schmitt, R.A., et al., High alumina (HA) and very high potassium (VHK) basalt clasts from Apollo 14 breccias. II. Whole rock geochemistryfurther evidence for combined assimilation and fractional crystallization within the lunar crust, Proc. Lunar and Planet. Sci., 1989, vol. 19, pp. 147–161.

    Google Scholar 

  • Neal, C.R., Taylor, L.A., and Lindstrom, M.M., Apollo 14 mare basalt petrogenesis: assimilation of KREEP-like components by a fractionating magma, Proc. Lunar Planet. Sci., 1988, vol. 18, pp. 139–153.

    Google Scholar 

  • Nemchin, A.A., Pidgeon, R.T., Whitehouse, M.J., et al., Complex history of a zircon aggregate from lunar breccia 73235, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 668–689.

    Article  Google Scholar 

  • Nemchin, A.A., Timms, N.E., Pidgeon, R.T., et al., Timing of crystallization of the lunar magma ocean constrained by the oldest zircon, Nat. Geosci., 2009, vol. 2, pp. 133–136.

    Article  Google Scholar 

  • Pidgeon, R.T., Nemchin, A.A., Grange, M.L., and Meyer, C., Evidence for a lunar “cataclysm” at 4.34 Ga from zircon U-Pb system, Lunar Planet. Sci., 2010, vol. 41, #1126.pdf.

    Google Scholar 

  • Pidgeon, R.T., Nemchin, A.A., Shields, W.R., and Garner, E.L., Complex history of a zircon aggregate from lunar breccia 73235, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 1370–1381.

    Article  Google Scholar 

  • Rios, E., Salje, E.K.H., Zhang, M., and Ewing, R.C., Amorphization in zircon: evidence for direct impact damage, J. Phys.: Condens. Matter, 2000, vol. 12, pp. 2401–2412.

    Google Scholar 

  • Shervais, J.W., Taylor, L.A., Laul, J.C., et al., Very high potassium (VHK) basalt: complications in mare basalt petrogenesis, Proc. 16th Lunar Planet. Sci., Geophys. Res. Lett., 1985, vol. 90, D3–D18.

    Article  Google Scholar 

  • Stoffler, D., Knoll, H.-D., Marvin, U.B., et al., Recommended classification and nomenclature of lunar highland rocks, in Lunar Highland Crust, Papike J.J. and Merrill R., Eds., (Pergamon Press, New York, 1980), pp. 51–70.

    Google Scholar 

  • Warner, R.D., Taylor, G.J., Keil, K., et al., Aluminous mare basalts: new data from Apollo 14 coarse fines, Proc. Lunar Planet. Sci., 1980, vol. 11, pp. 87–104.

    Google Scholar 

  • Warren, P.H., Taylor, G.J., Keil, K., et al., Seventh foray: whitlockite-rich lithologies, a diopside-bearing troctolitic anorthosite, ferroan anorthosites and KREEP, Proc. 14th Lunar Planet. Sci., J. Geophys. Res., 1983, vol. 88 (Suppl.), pp. B151–B164.

    Article  Google Scholar 

  • Warren, P.H., Ulff-Møller, F., and Kallemeyn, G.W., “New” lunar meteorites: impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crust, Meteorit. Planet. Sci., 2005, vol. 40, pp. 989–1014.

    Article  Google Scholar 

  • Weisberg, M.K., Smith, C., Benedix, G., et al., The meteoritical bulletin, No. 95, Meteorit. Planet. Sci., 2009, vol. 44, pp. 429–462.

    Google Scholar 

  • Wiedenbeck, M., Allé, P., Corfu, F., et al., Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostand. Newsl., 1995, vol. 19, pp. 1–23.

    Article  Google Scholar 

  • Wilhelms, D.E., The geologic history of the Moon, U.S. Geol. Surv. Prof. Pap., 1987, No. 1348.

    Google Scholar 

  • Williams, I.S., Compston, W., Black, L.P., et al., Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages, Contrib. Mineral. Petrol., 1984, vol. 88, pp. 322–327.

    Article  Google Scholar 

  • Zeigler, R.A., Korotev, R.L., and Jolliff, B.L., Petrography and geochemistry of lunar meteorite Dhofar 1442, Lunar Planet. Sci., 2011, vol. 42, #1012.pdf.

  • Zhang, A., Hsu, W., Li, X., et al., Polycrystalline zircon in lunar meteorite Dhofar 458: origin and implications, Lunar Planet. Sci., 2011, vol. 42, #1056.pdf.

  • Zhou, Q., Zeigler, R.A., Yin, Q.Z., et al., U-Pb dating of zircons and phosphates in lunar meteorites, acapulcoites and angrites, Lunar Planet. Sci., 2012, vol. 43, #1554.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Demidova.

Additional information

Original Russian Text © S.I. Demidova, M.A. Nazarov, M.O. Anosova, Yu.A. Kostitsyn, Th. Ntaflos, F. Brandstaetter, 2014, published in Petrologiya, 2014, Vol. 22, No. 1, pp. 3–20.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Demidova, S.I., Nazarov, M.A., Anosova, M.O. et al. U-Pb zircon dating of the lunar meteorite Dhofar 1442. Petrology 22, 1–16 (2014). https://doi.org/10.1134/S0869591114010020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591114010020

Keywords

  • Zircon
  • 206Pb
  • Breccia
  • Ilmenite
  • Lunar Surface