Petrology

, Volume 22, Issue 1, pp 1–16 | Cite as

U-Pb zircon dating of the lunar meteorite Dhofar 1442

  • S. I. Demidova
  • M. A. Nazarov
  • M. O. Anosova
  • Yu. A. Kostitsyn
  • Th. Ntaflos
  • F. Brandstaetter
Article

Abstract

Dhofar 1442 is one of the few lunar KREEP-rich meteorites, which contains KREEP norites and KREEP gabbronorite as well as low-Ti basalts and highly evolved granophyres. Zircon is a typical accessory mineral of KREEP rocks. U-Th-Pb dates of 12 zircon grains (four of them were in two lithic clasts, and the others were fragments in the meteorite matrix) indicate that the zircons belong to at least two groups of different age: “ancient” (∼4.31 Ga) and “young” (∼3.95 Ga), which correspond to two major pulses of KREEP magmatism in the source region of the Dhofar 1442 meteorite. The zircon of the “young” group was most probably related to the crater ejecta of the Mare Imbrium Basin. The rock fragments dated at approximately 3.95 Ga have the composition of KREEP gabbronorite. The parental rocks of the zircon of the “ancient” group in the Dhofar 1442 meteorite are uncertain and could be highly evolved granophyres. This hypothesis is supported by the high Th (100–300 ppm) and U (150–400 ppm) contents. These zircon fragments of the “ancient” group, higher than in the “young” group (<50 ppm Th and <70 ppm U) and are typical of zircon from lunar granitic rocks. The composition of the products of KREEP magmatism in the source region of the Dhofar 1442 meteorite could vary from predominantly granitic to KREEP gabbronoritic at 4.3–3.9 Ga.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, T., Yoshitake, M., Tomiyama, T., et al., Support for a prolonged KREEP magmatism: U-Pb age dating of zircon and baddeleyite in lunar meteorite NWA 4485, Lunar Planet. Sci., 2010, vol. 41, #2379.pdf.Google Scholar
  2. Borg, L.E., Connelly, J.N., Boyet, M., and Carlson, R.W., Chronological evidence that the Moon is either young or did not have a global magma ocean, Nature, 2011, vol. 477, pp. 70–72. doi:10.1038/nature10328.CrossRefGoogle Scholar
  3. Corfu, F., A century of U-Pb geochronology: the long quest towards concordance, Geol. Soc. Am. Bull., 2013, vol. 125, nos. 1-2, pp. 33–47.CrossRefGoogle Scholar
  4. Demidova, S.I., Nazarov, M.A., Anosova, M.O., et al., U-Pb dating of zircons from the Dhofar 1442 lunar meteorite, Lunar Planet. Sci., 2012a, vol. 43, #1090.pdf.Google Scholar
  5. Demidova, S.I., Nazarov, M.A., Lorents, K.A., et al., Chemical composition of lunar meteorites and the lunar crust, Petrology, 2007, vol. 15, no. 4, pp. 386–407.CrossRefGoogle Scholar
  6. Demidova, S.I., Nazarov, M.A., Anosova, M.O., et al., Petrography and an age of KREEP gabbro-noritic clasts in the Dhofar 1442 lunar meteorite, Eur. Lunar Symp., 2012b, pp. 23–24.Google Scholar
  7. Gibson, R.L., Armstrong, R.A., and Reimold, W.U., The age and thermal evolution of the Vredefort impact structure, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 1531–1540.CrossRefGoogle Scholar
  8. Glotch, T.D., Lucey, P.G., Bandfield, J.L., et al., Highly silicic compositions on the Moon, Science, 2010, vol. 329, pp. 1510–1513.CrossRefGoogle Scholar
  9. Gnos, E., Hofmann, B.A., Al-Kathiri, A., et al., Pinpointing the source of a lunar meteorite: implications for the evolution of the Moon, Science, 2004, vol. 305, pp. 657–659.CrossRefGoogle Scholar
  10. Grange, M.L., Pidgeon, R.T., Nemchin, A.A., et al., Interpreting U-Pb data from primary and secondary features in lunar zircon, Geochim. Cosmochim. Acta, 2013, vol. 101, pp. 112–132.CrossRefGoogle Scholar
  11. Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology, Chem. Geol., 2004, vol. 211, pp. 47–69.CrossRefGoogle Scholar
  12. Jolliff, B.L., Tran, T.N., Lawrence, S.J., et al., ComptonBelkovich: nonmare, silicic volcanism on the Moon’s far side, Lunar Planet. Sci., 2011, vol. 42, # 2224.Google Scholar
  13. Korotev, R.L., Lunar geochemistry as told by lunar meteorites, Chemie der Erde, 2005, vol. 65, pp. 297–346.CrossRefGoogle Scholar
  14. Korotev, R.L., Zeigler, R.A., Jolliff, B.L., et al., Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron composition, Meteorit. Planet. Sci., 2009, vol. 44, pp. 1287–1322.CrossRefGoogle Scholar
  15. Korotev, R.L., Lunar meteorites from Oman, Meteorit. Planet. Sci., 2012, vol. 47, pp. 1365–1402.CrossRefGoogle Scholar
  16. Kostitsyn, Yu.A. and Anosova, M.O., U-Pb age of extrusive rocks in the Uxichan Caldera, Sredinnyi Range, Kamchatka: application of laser ablation in dating young zircons, Geochem. Int., 2013, vol. 51, no. 2, pp. 155–163.CrossRefGoogle Scholar
  17. Lawrence, D.J., Feldman, W.C., Barraclough, B.L., et al., High resolution measurements of absolute thorium abundances on the lunar surface, Geophys. Rev. Lett., 1999, vol. 26, no. 17, pp. 2681–2685.CrossRefGoogle Scholar
  18. Lawrence, D.J., Feldman, W.C., Barraclough, B.L., et al., Thorium abundances on the lunar surface, J. Geophys. Res., 2000, vol. 105, no. E8, pp. 20307–20331.CrossRefGoogle Scholar
  19. Leont’eva, E.M., Matukov, D.I., Nazarov, M.A., et al., First determination of the isotopic age of a lunar meteorite by the uranium-lead zircon method, Petrology, 2005, vol. 13, no. 2, pp. 193–196.Google Scholar
  20. Liu, D., Jolliff, B.L., Zeigler, R.A., et al., A 3.91 billion year age for Apollo 12 high-thorium impact-melt breccias: products of Imbrium, or and older impact basin in the Procellarum KREEP terrane?, Lunar Planet. Sci., 2010, vol. 41, #2477pdf.Google Scholar
  21. Liu, D., Wan, Y., Zhang, Y., et al., Age of zircons in the impact-melt breccia in SaU 169 lunar meteorite: Beijing SHRIMP II study, Lunar Planet. Sci., 2009, vol. 40, #2499.pdf.Google Scholar
  22. Liu, D., Jolliff, B.L., Zeigler, R.A., et al., Comparative zircon U-Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact, Earth Planet. Sci. Lett., 2012, vol. 319–320, pp. 277–286.CrossRefGoogle Scholar
  23. Marvin, U.B., Lindstrom, M.M., Holmberg, B.B., and Martinez, R.R., New observations on the quartz monzodiorite-granite suite, Proc. Lunar Planet. Sci., 1991, vol. 21, pp. 119–135.Google Scholar
  24. McFarlane, C.R.M., Connelly, J.N., and Carlson, W.D., Intracrystalline redistribution of Pb in zircon during hightemperature metamorphism, Chem. Geol., 2005, vol. 217, pp. 1–28.CrossRefGoogle Scholar
  25. Meyer, C., Williams, I.S., and Compston, W., Uraniumlead ages for lunar zircons: evidence for a prolonged period of granophyre formation from 4.32 to 3.88, Meteorit. Planet. Sci., 1996, vol. 31, pp. 370–387.CrossRefGoogle Scholar
  26. Neal, C.R., Taylor, L.A., Schmitt, R.A., et al., High alumina (HA) and very high potassium (VHK) basalt clasts from Apollo 14 breccias. II. Whole rock geochemistryfurther evidence for combined assimilation and fractional crystallization within the lunar crust, Proc. Lunar and Planet. Sci., 1989, vol. 19, pp. 147–161.Google Scholar
  27. Neal, C.R., Taylor, L.A., and Lindstrom, M.M., Apollo 14 mare basalt petrogenesis: assimilation of KREEP-like components by a fractionating magma, Proc. Lunar Planet. Sci., 1988, vol. 18, pp. 139–153.Google Scholar
  28. Nemchin, A.A., Pidgeon, R.T., Whitehouse, M.J., et al., Complex history of a zircon aggregate from lunar breccia 73235, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 668–689.CrossRefGoogle Scholar
  29. Nemchin, A.A., Timms, N.E., Pidgeon, R.T., et al., Timing of crystallization of the lunar magma ocean constrained by the oldest zircon, Nat. Geosci., 2009, vol. 2, pp. 133–136.CrossRefGoogle Scholar
  30. Pidgeon, R.T., Nemchin, A.A., Grange, M.L., and Meyer, C., Evidence for a lunar “cataclysm” at 4.34 Ga from zircon U-Pb system, Lunar Planet. Sci., 2010, vol. 41, #1126.pdf.Google Scholar
  31. Pidgeon, R.T., Nemchin, A.A., Shields, W.R., and Garner, E.L., Complex history of a zircon aggregate from lunar breccia 73235, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 1370–1381.CrossRefGoogle Scholar
  32. Rios, E., Salje, E.K.H., Zhang, M., and Ewing, R.C., Amorphization in zircon: evidence for direct impact damage, J. Phys.: Condens. Matter, 2000, vol. 12, pp. 2401–2412.Google Scholar
  33. Shervais, J.W., Taylor, L.A., Laul, J.C., et al., Very high potassium (VHK) basalt: complications in mare basalt petrogenesis, Proc. 16th Lunar Planet. Sci., Geophys. Res. Lett., 1985, vol. 90, D3–D18.CrossRefGoogle Scholar
  34. Stoffler, D., Knoll, H.-D., Marvin, U.B., et al., Recommended classification and nomenclature of lunar highland rocks, in Lunar Highland Crust, Papike J.J. and Merrill R., Eds., (Pergamon Press, New York, 1980), pp. 51–70.Google Scholar
  35. Warner, R.D., Taylor, G.J., Keil, K., et al., Aluminous mare basalts: new data from Apollo 14 coarse fines, Proc. Lunar Planet. Sci., 1980, vol. 11, pp. 87–104.Google Scholar
  36. Warren, P.H., Taylor, G.J., Keil, K., et al., Seventh foray: whitlockite-rich lithologies, a diopside-bearing troctolitic anorthosite, ferroan anorthosites and KREEP, Proc. 14th Lunar Planet. Sci., J. Geophys. Res., 1983, vol. 88 (Suppl.), pp. B151–B164.CrossRefGoogle Scholar
  37. Warren, P.H., Ulff-Møller, F., and Kallemeyn, G.W., “New” lunar meteorites: impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crust, Meteorit. Planet. Sci., 2005, vol. 40, pp. 989–1014.CrossRefGoogle Scholar
  38. Weisberg, M.K., Smith, C., Benedix, G., et al., The meteoritical bulletin, No. 95, Meteorit. Planet. Sci., 2009, vol. 44, pp. 429–462.Google Scholar
  39. Wiedenbeck, M., Allé, P., Corfu, F., et al., Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostand. Newsl., 1995, vol. 19, pp. 1–23.CrossRefGoogle Scholar
  40. Wilhelms, D.E., The geologic history of the Moon, U.S. Geol. Surv. Prof. Pap., 1987, No. 1348.Google Scholar
  41. Williams, I.S., Compston, W., Black, L.P., et al., Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages, Contrib. Mineral. Petrol., 1984, vol. 88, pp. 322–327.CrossRefGoogle Scholar
  42. Zeigler, R.A., Korotev, R.L., and Jolliff, B.L., Petrography and geochemistry of lunar meteorite Dhofar 1442, Lunar Planet. Sci., 2011, vol. 42, #1012.pdf.Google Scholar
  43. Zhang, A., Hsu, W., Li, X., et al., Polycrystalline zircon in lunar meteorite Dhofar 458: origin and implications, Lunar Planet. Sci., 2011, vol. 42, #1056.pdf.Google Scholar
  44. Zhou, Q., Zeigler, R.A., Yin, Q.Z., et al., U-Pb dating of zircons and phosphates in lunar meteorites, acapulcoites and angrites, Lunar Planet. Sci., 2012, vol. 43, #1554.pdf.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. I. Demidova
    • 1
  • M. A. Nazarov
    • 1
  • M. O. Anosova
    • 1
  • Yu. A. Kostitsyn
    • 1
  • Th. Ntaflos
    • 2
  • F. Brandstaetter
    • 3
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Departament für LithospäreforshungUniversität WienWienÖsterreich
  3. 3.Naturhistorisches MuseumWienÖsterreich

Personalised recommendations