Skip to main content
Log in

Fluid-mineral equilibria and thermodynamic mixing properties of fluid systems

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents a review of an experimental method to quantitatively constrain thermodynamic mixing properties of fluid systems at high temperature T and pressure P. The method is based on bracketing equilibrium parameters of simple fluid-mineral reactions. Experimental data obtained with this technique for the H2O-CO2, H2O-N2, and H2O-H2 binary systems were utilized to calculate mixing parameters corresponding to the simplified van Laar model W VL12 , according to which the equation for the integral excess Gibbs free energy of a binary mixture G ex is G ex =X 1 X 2 W VL12 /(X 1 V 01 + X 2 V 02 ), where X i is the mole fractions of the components, and V 0 i are pure species molar volumes at given P and T (in cm3). The W VL12 for the three mixtures correspond to 202, 219, and 331 kJ cm3/mol. The empirical correlation \(W_{H_2 O - X}^{VL}\) (kJ cm3/mol) = 887.012 Q X − 16.674, where Q = P c (critical pressure, bar)/T c (critical temperature, K) for gas X (where X = CH4, CO, H2S, O2, Ar, and NH3) is used to evaluate the van Laar parameters for a number of petrologically important water-gas mixtures. The H2O-H2 system is characterized by the greatest positive deviation from the ideal mixing and can thus decompose into two immiscible fluid phases under the P-T parameters typical of deep lithospheric zones. The exsolution of the H2O-CO2 and H2O-N2 systems is expected to occur only under high pressure and low temperature. This combination of parameters may be expected only in the environments of cold subduction. Salts (highly soluble simple salts and/or silicates) should significantly expand the exsolution regions in petrologically important fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium, Contrib. Mineral. Petrol., 1996, vol. 125, pp. 200–212.

    Article  Google Scholar 

  • Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated KCl and KCl-NaCl solutions at high temperatures and pressures measured by the brucite-periclase equilibrium, Contrib. Mineral. Petrol., 1997, vol. 127, pp. 261–271.

    Article  Google Scholar 

  • Aranovich, L.Y. and Newton, R.C., Experimental determination of CO2-H2O activity-concentration relations at 600–1000°C and 6–14 kbar by reversed decarbonation and dehydration reactions, Am. Mineral., 1999, vol. 84, pp. 1319–1332.

    Google Scholar 

  • Aranovich, L.Ya., Zakirov, I.V., Sretenskaya, N.G., and Gerya, T.V., Ternary system H2O-CO2-NaCl at high T-P parameters: an empirical mixing model, Geochem. Int., 2010, vol. 48, no. 5, pp. 446–456.

    Article  Google Scholar 

  • Bali, E., Audetat, A., and Keppler, H., Immiscibility between water and hydrogen in Earth’s upper mantle, BGI Annual Report, 2011, pp. 131–132.

    Google Scholar 

  • Berman, R.G. and Aranovich, L.Y., Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2, Contrib. Mineral. Petrol., 1996, vol. 126, pp. 1–22.

    Article  Google Scholar 

  • Cartigny, P., Harris, J.W., and Javoy, M., Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ13C-N concentrations in diamonds, Earth Planet. Sci. Lett., 2001, vol. 185, pp. 85–98.

    Article  Google Scholar 

  • Churakov, S.V. and Gottschalk, M., Perturbation theory based equation of state for polar molecular fluids: I. Pure fluids, Geochim. Cosmochim. Acta, 2003a, vol. 67, pp. 2397–2414.

    Article  Google Scholar 

  • Churakov, S.V. and Gottschalk, M., Perturbation theory based equation of state for polar molecular fluids: II. Fluid mixtures, Geochim. Cosmochim. Acta, 2003b, vol. 67, pp. 2415–2425.

    Article  Google Scholar 

  • Costantino, M. and Rice, S.F., Supercritical phase separation in H2O-N2 mixtures, J. Phys. Chem., 1991, vol. 95, pp. 9034–9036.

    Article  Google Scholar 

  • Dobretsov, N.L., Ashchepkov, I.V., Simonov, V.A., and Zhmodik, S.M., Interaction of upper mantle rocks with mantle fluids and melts in the Baikal rift zone, Geol. Geofiz., 1992, no. 5, pp. 3–21.

    Google Scholar 

  • Duan, Z., Møller, N., and Weare, J.H., A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture P-V-T-X properties, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 1209–1216.

    Article  Google Scholar 

  • Fredenslund, A., Jones, R.L., and Prausnitz, J.M., Groupcontribution estimation of activity coefficients in nonideal liquid mixtures, AIChE J., 1975, vol. 21, pp. 1086–1099.

    Article  Google Scholar 

  • Gerya, T.V. and Perchuk, L.L., Equations of state of compressed gases for thermodynamic databases used in petrology, Petrology, 1997, vol. 5, pp. 366–380.

    Google Scholar 

  • Gottschalk, M., Equations of state for complex fluids, Rev. Mineral. Geochem., 2007, vol. 65, pp. 49–97.

    Article  Google Scholar 

  • Greenwood, H.J., Wollastonite: stability in H2O-CO2 mixtures and occurrence in a contact-metamorphic aureole near Salmo, British Columbia, Canada, Am. Mineral., 1967, vol. 52, pp. 1669–1680.

    Google Scholar 

  • Haefner, A., Aranovich, L.Y., Connolly, J.A.D., and Ulmer, P., H2O activity in H2O-N2 fluids at high pressure and temperature measured by the brucite-periclase equilibrium, Am. Mineral., 2002, vol. 87, pp. 822–828.

    Google Scholar 

  • van Hinsberg, M.G.E., Verbrugge, R., and Schouten, J.A., High temperature-high pressure experiments on H2O-N2, Fluid Phase Equilib., 1993, vol. 88, pp. 115–121.

    Article  Google Scholar 

  • Hirschmann, M.M., Withers, A.C., Ardia, P., and Foley, N.T., Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets, Earth Planet. Sci. Lett., 2012, vol. 345–348, pp. 38–48.

    Article  Google Scholar 

  • Holland, T.J.B. and Powell, R., A compensated Redlich-Kwong equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–1600°C, Contrib. Mineral. Petrol., 1991, vol. 109, pp. 265–273.

    Article  Google Scholar 

  • Holland, T.J.B. and Powell, R., An internally-consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 1998, vol. 16, pp. 309–343.

    Article  Google Scholar 

  • Holland, T.J.B. and Powell, R., Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation, Contrib. Mineral. Petrol., 2003, vol. 145, pp. 492–501.

    Article  Google Scholar 

  • Holloway, J.R., Fugacity and activity of molecular species in supercritical fluids, in Thermodynamics in Geology, Fraser, D.G., Ed., Dordrecht: Reidel, 1977, pp. 161–181.

    Chapter  Google Scholar 

  • Japas, M.L. and Franck, E.U., High pressure phase equilibria and P-V-T data of the water-oxygen system including water-air to 673 K and 250 MPa, Berichte der Bunsengesellschaft für Physikalische Chemie, 1985, vol. 89, pp. 1268–1275.

    Article  Google Scholar 

  • Kerrick, D.M. and Jacobs, G.K., A modified Redlich-Kwong equation for H2O, CO2 and H2O-CO2 mixtures at elevated pressures and temperatures, Am. J. Sci., 1981, vol. 281, pp. 735–767.

    Article  Google Scholar 

  • Kontogeorgis, G.M., Yakoumis, I.V., Coutsikos, P., and Tassios, D.P., A generalized expression for the ratio of the critical temperature to the critical pressure with the van der Waals surface area, Fluid Phase Equilib., 1997, vol. 140, pp. 145–156.

    Article  Google Scholar 

  • Korikovsky, S.P. and Aranovich, L.Ya., Charnockitization and enderbitization of mafic granulites in the Porya Bay area, Lapland Granulite Belt, Southern Kola Peninsula: I. Petrology and geothermobarometry, Petrology, 2010, vol. 18, no. 4, pp. 320–349.

    Article  Google Scholar 

  • Leachman, J.W., Jacobsen, R.T., Penoncello, S.G., and Lemmon, E.W., Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen, J. Phys. Chem. Ref. Data, 2009, vol. 38, no. 3, pp. 721–748.

    Article  Google Scholar 

  • Letnikov, F.A., Ultradeep fluid systems of the Earth and problems of ore formation, Geol. Ore Dep., 2001, vol. 43, no. 4, pp. 259–273.

    Google Scholar 

  • Marakushev, A.A., Termodinamika metamorficheskoi gidratatsii mineralov (Thermodynamics of Metamorphic Hydration of Minerals), Moscow: Nauka, 1968.

    Google Scholar 

  • Newton, R.C., Aranovich, L.Y., Hansen, E.C., and Vandenheuvel, B.A., Hypersaline fluids in Precambrian deepcrustal metamorphism, Precambrian Res., 1998, vol. 38, pp. 21–34.

    Google Scholar 

  • Newton, R.C. and Manning, C.A., Role of saline fluids in deep-crustal and upper-mantle metasomatism: insights from experimental studies. Geofluids, 2010, vol. 10, pp. 58–72.

    Google Scholar 

  • Perchuk, L.L., Termodinamicheskii rezhim glubinnogo petrogeneza (Thermodynamic Regime of Deep Petrogenesis), Moscow: Nauka, 1973.

    Google Scholar 

  • Perchuk, L.L. and Gerya, T.V., Fluid control of charnockitization, Chem. Geol., 1993, vol. 108, pp. 175–186.

    Article  Google Scholar 

  • Ryabchikov, I.D. and Orlova, G.P., Role of mantle fluids in transportation of ore components, in Rudoobrazuyushchie protsessy i sistemy (Ore-Forming Processes and Systems), Moscow: Nauka, 1989, pp. 25–34.

    Google Scholar 

  • Saxena, S.K. and Fei, Y., Fluid mixtures in the C-H-O system at high pressure and temperature, Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 505–512.

    Article  Google Scholar 

  • Shaw, H.R., Hydrogen-water vapor mixtures: control of hydrothermal atmospheres by hydrogen osmosis, Science, 1963, vol. 139, pp. 1220–1222.

    Article  Google Scholar 

  • Shi, P. and Saxena, S.K., Thermodynamic modeling of the C-H-O-S fluid system, Am. Mineral., 1992, vol. 77, pp. 1038–1049.

    Google Scholar 

  • Shmulovich, K.I., Shmonov, V.M., and Zharikov, V.A., The thermodynamics of supercritical fluid systems, in Advances in Physical Geochemistry, Saxena, S.K., Ed., New York: Springer, 1982, vol. 3, pp. 173–190.

    Article  Google Scholar 

  • Shmulovich, K.I., Dvuokis’ ugleroda v vysokotemperaturnykh protsessakh mineraloobrazovaniya (Carbon Dioxide in High-Temperature Mineral-Forming Processes), Moscow: Nauka, 1988.

    Google Scholar 

  • Shmulovich, K.I. and Graham, C.M., An experimental study of phase equilibria in the systems H2O-CO2-CaCl2 and H2O-CO2-NaCl at high pressures and temperatures (500–800°C, 0.5–0.9 GPa): geological and geophysical applications, Contrib. Mineral. Petrol., 2004, vol. 146, pp. 450–462.

    Article  Google Scholar 

  • Syracuse, E.M. and Abers, G.A., The global range of subduction zone thermal models, Phys. Earth Planet. Int, 2010, vol. 183, nos. 1–2, pp. 73–90.

    Article  Google Scholar 

  • Zhang, C. and Duan, Z., A model for C-O-H fluid in the Earth’s mantle, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 2089–2102.

    Article  Google Scholar 

  • Ziegenbein, D. and Johannes, W., Activities of CO2 in supercritical CO2-H2O mixtures, derived from high pressure mineral equilibrium data, in High-Pressure Researches in Geoscience, Schreyer, W., Ed., Stuttgart: Schweitzerbart’sche Verlagsbuchhandlung, 1982, pp. 493–500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ya. Aranovich.

Additional information

Original Russian Text © L.Ya. Aranovich, 2013, published in Petrologiya, 2013, Vol. 21, No. 6, pp. 588–599.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aranovich, L.Y. Fluid-mineral equilibria and thermodynamic mixing properties of fluid systems. Petrology 21, 539–549 (2013). https://doi.org/10.1134/S0869591113060027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591113060027

Keywords

Navigation