Skip to main content
Log in

Neoarchean sanukitoid magmatism in the Kola region: Geological, petrochemical, geochronological, and isotopic-geochemical data

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

New geological, isotopic-geochronological, petrochemical, and isotopic geochemical data were obtained on the Porosozero and Kolmozero sanukitoid intrusions in the Kola region. The Porosozero differentiated intrusion was formed in four phases successively emplaced during approximately 60 Ma. Phase 1 consists of a gabbrodiorite-quartz monzodiorite-granodiorite-granite series. The zircon ages of granodiorite and quartz monzodiorite from the Porosozero are 2733 ± 6 and 2734 ± 4 Ma, respectively. Phase 2 of the intrusion comprises biotite leucogranites and aplite and leucoplagiogranite veins. The zircon age of the leucogranite is 2712 ± 6 Ma. Phase 3 consists of lamprophyre dikes of odinite-spessartite-vogesite composition. The emplacement age of the lamprophyres is constrained by the age of magmatic zircon from an odinite dike: 2680 ± 10 Ma. The age of the metasomatic zircon is 2629 ± 8 Ma. Phase 4 is composed of the youngest pegmatite veins. The Rb-Sr isochron age of the phase-1 rocks is 2724 ± 74 Ma. The zircon age of granitoids from the Kolmozero is 2736 ± 4 Ma. The rocks of the sanukitoid intrusions affiliate with the calc-alkaline series, have Mg# = 0.45−0.60, are enriched in Ba, Sr, K, P, and LREE, and contain elevated concentrations of Cr and Ni. Sm-Nd isotopic data on sanukitoids from both intrusions suggest that they were derived from a mantle source enriched in LILE and LREE and having ɛNd(2740) from +1.02 to +0.36. It was melted approximately 140 Ma after its origin [T(DM) = 2.9−2.8 Ga]. The rocks of the Porosozero and Kolmozero are proved to be similar to magmatic sanukitoid series of Archean and Phanerozoic age whose genesis was controlled by mantle-crustal interaction in suprasubduction environments at active continental margins. Elevated concentrations of Ag and Au in rocks from the Porosozero make it metallogenically promising in terms of precious metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arth, J.G., Barker, F., Peterman, Z.E., and Friedman, I., Geochemistry of the gabbro-diorite-tonalitetrondhjemite suite of Southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas, J. Petrol., 1978, vol. 19, no. 2, pp. 289–316.

    Article  Google Scholar 

  • Bayanova, T.B., Pozhilenko, V.I., Smol’kin, V.F., et al., Catalogue of geochronological data on the northeastern Baltic Shield, in Geologiya rudnykh raionov Murmanskoi oblasti. Prilozhenie 3 (Geology of Ore Districts of the Murmansk Oblast. Supplement 3), Apatity: KNTs RAN, 2002.

    Google Scholar 

  • Bayanova, T.B., Vozrast repernykh geologicheskikh kompleksov Kol’skogo regiona i dlitel’nost’ protsessov magmatizma (Age of Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes), St. Petersburg: Nauka, 2004.

    Google Scholar 

  • Bibikova, E.V., Petrova, A., and Claesson, S., The temporal evolution of sanukitoids in the Karelian Craton, Baltic Shield: an ion microprobe U-Th-Pb isotopic study of zircons, Lithos, 2005, vol. 79, pp. 129–145.

    Article  Google Scholar 

  • Bibikova, E.V., Arestova, N.A., Ivanikov, V.V., et al., Isotopic geochronology of the Archean post-tectonic association of sanukitoids, syenites, and granitoids in Central Karelia, Petrology, 2006, vol. 14, no. 1, pp. 39–49.

    Article  Google Scholar 

  • Blandy, J.D. and Holland, J.B., Calcic amphibole equilibria and a new amphibole-plagioclase geothermometre, Contrib. Mineral. Petrol., 1990, vol. 104, no. 2, pp. 208–224.

    Article  Google Scholar 

  • Bogatikov, O.A., Gon’shakova, V.I., Borsuk, A.M., et al., Magmaticheskie gornye porody. Klassifikatsiya, nomenklatura, petrografiya. Srednie i kislye porody (Magmatic Rocks. Classification, Nomenclature, and Petrography. Intermediate and Felsic Rocks), Moscow: Nauka, 1985, vol. 2.

    Google Scholar 

  • Borodina, N.S., Petrography and Geochemistry of the Gold-Bearing Granitoid Massifs of the Middle and South Urals, Doctoral (Geol.-Min.) Dissertation, Sverdlovsk: Inst. Geol. Geochem. Ural. Branch, Akad. Nauk SSSR, 1969.

    Google Scholar 

  • Boynton, W.V., Cosmochemistry of the rare earth elements: meteorite studies, in Rare Earth Element Geochemistry, Henderson, P., Ed., Amsterdam: Elsevier, 1984, pp. 63–114.

    Google Scholar 

  • Cassidy, K.F., Barley, M.E., Groves, D.I., et al., An overview of the nature, distribution and inferred tectonic setting of granitoids of the Late Archaean Norseman-Wiluna Belt, Precambrian Res., 1991, vol. 51, pp. 51–83.

    Article  Google Scholar 

  • Chekulaev, V.P., Archean “sanukitoids” on the Baltic Shield, Dokl. Earth Sci., 1999, vol. 369, no. 8, pp. 1137–1139.

    Google Scholar 

  • Chekulaev, V.P., Levchenkov, O.A., Ivanikov, V.V., et al., Composition, age, and Sm-Nd systematics of Archean high-Mg granitoids (sanukitoids) of the Panozero Pluton, Karelia, Geochem. Int., 2003, vol. 41, no. 8, pp. 741–752.

    Google Scholar 

  • Chekulaev, V.P., Bayanova, T.B., Arestova, N.A., et al., Age of high-Mg granitoids of the Nyukozero Massif, Karelia, Dokl. Earth Sci., 2004, vol. 394, no. 1, pp. 58–61.

    Google Scholar 

  • Chen, L., Guo, J., Liu, F., and Sun, Y., ∼2.5 Ga sanukitoids from Guyang Greenstone Belt, North China, Goldschmidt Conf. Abstr., 2007, p. A166.

    Google Scholar 

  • O’Connor, J.T., A classification for quartz-rich igneous rocks based on feldspar ratios, U.S. Geol. Surv. Prof. Pap., 1965, vol. 525-B, pp. 79–84.

    Google Scholar 

  • Corfu, F., Krogh, T.E., Kwok, Y.Y., and Jensen, L.S., U-Pb zircon geochronology in the southwestern Abitibi Greenstone Belt, Superior Province, Can. J. Earth Sci., 1989, vol. 26, pp. 1747–1763.

    Article  Google Scholar 

  • Corfu, F. and Stott, G., Age and petrogenesis of two Late Archaean magmatic suites, northwestern Superior Province, Canada: zircon U-Pb and Lu-Hf isotopic ratios, J. Petrol., 1993, vol. 34, pp. 817–838.

    Article  Google Scholar 

  • Davis, D.W., Blackburn, C.E., and Krogh, T.E., Zircon U-Pb ages from Wabigoon-Manitou Lakes Area, Wabigoon Subprovince, Northern Ontario, Can. J. Earth Sci., 1982, vol. 19, pp. 254–266.

    Article  Google Scholar 

  • Davis, D.W. and Lin, S., Unraveling the geologic history of the Hemlo Archean Gold Deposit, Superior Province, Canada: a U-Pb geochronological study, Econ. Geol., 2003, vol. 98, pp. 51–67.

    Google Scholar 

  • DePaolo, D.J., Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic, Nature, 1981, vol. 291, pp. 193–196.

    Article  Google Scholar 

  • Dorais, M.J., Whitney, J.A., and Roden, M.F., Origin of mafic enclaves in the Dinkey Creek Pluton, Central Sierra Nevada Batholith, California, J. Petrol., 1990, vol. 31, no. 4, pp. 853–881.

    Article  Google Scholar 

  • Dubrovsky, M.I., Parageneticheskii analiz mineral’nykh assotsiatsii granitoidov (Paragenetic Analysis of Mineral Associations of Granites), Leningrad: Nauka, 1987.

    Google Scholar 

  • Fedotova, A.A., Bibikova, E.V., and Simakin, S.G., Ionmicroprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies, Geochem. Int., 2008, vol. 46, no. 9, pp. 912–927.

    Article  Google Scholar 

  • Fershtater, G.B., Empirical plagioclase-hornblende barometer, Geokhimiya, 1990, No. 3. pp. 328–335.

    Google Scholar 

  • Fershtater, G.B. and Borodina, N.S., Petrologiya magmaticheskikh granitoidov (na primere Urala) (Petrology of Magmatic Granitoids with Reference to the Urals), Moscow: Nauka, 1975.

    Google Scholar 

  • Fershtater, G.B., Petrologiya glavnykh intruzivnykh assotsiatsii (Petrology of Main Intrusive Associations), Moscow: Nauka, 1987.

    Google Scholar 

  • Fershtater, G.B., Borodina, N.S., Rapoport, M.S., et al., Orogennyi granitoidnyi magmatizm Urala (Orogenic Granitoid Magmatism of the Urals), Miass: 1994.

    Google Scholar 

  • Gordienko, V.V., Mineralogiya, geokhimiya i genezis spodumenovykh pegmatitov (Mineralogy, Geochemistry, and Genesis of Spodumene Pegmatites), Leningrad: Nedra, 1970.

    Google Scholar 

  • Gribble, R.F., Barnes, C.G., Donato, M.M., et al., Geochemistry and intrusive history of the Ashland Pluton Klamanth Mountains, California and Oregon, J. Petrol., 1990, vol. 31, no. 4, pp. 883–923.

    Article  Google Scholar 

  • Halla, J., Late Archean high-Mg granitoids (sanukitoids) in the Southern Karelian Domain, Eastern Finland: Pb and Nd isotopic constraints on crust-mantle interactions, Lithos, 2005, vol. 79, pp. 161–178.

    Article  Google Scholar 

  • Hattory, K., Hart, S.R., and Shimizu, N., Melt and source mantle compositions in the Late Archaean: study of strontium and neodymium isotope and trace elements in clinopyroxenes from shoshonite alkaline rocks, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 4551–4562.

    Article  Google Scholar 

  • Heaman, L.M., Global mafic magmatism at 2.45 Ga: remnants of an ancient large igneous province?, Geology, 1997, vol. 25, no. 4, pp. 299–302.

  • Heilimo, E., Halla, J., and Hölttä, P., Discrimination and origin of the sanukitoid series: geochemical constraints from the Neoarchean Western Karelian Province (Finland), Lithos, 2010, vol. 115, pp. 27–39.

    Article  Google Scholar 

  • Heilimo, E., Halla, J., and Huhma, H., Single-grain zircon U-Pb age constraints of the Western and Eastern Sanukitoid Zones in the Finnish part of the Karelian Province, Lithos, 2011, vol. 121, pp. 87–99.

    Article  Google Scholar 

  • Johnson, M.C. and Rutherford, M.J., Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks, Geology, 1989, vol. 17, no. 9, pp. 837–841.

    Article  Google Scholar 

  • Kampunzu, A.B., Tombale, A.R., Zhai, M., et al., Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe Craton, Lithos, 2003, vol. 71, pp. 431–460.

    Article  Google Scholar 

  • Kay, S.M., Kay, R.W., and Citron, G.P., Tectonic control of Aleutian Arc tholeiitic and calc-alkaline magmatism, J. Geophys. Res., 1982, vol. 87, no. B5, pp. 4051–4072.

    Article  Google Scholar 

  • Kogarko, L.N., The role of global fluids in the genesis of mantle heterogeneities and alkaline magmatism, Russ. Geol. Geophys., 2005, vol. 46, no. 12, pp. 1213–1224.

    Google Scholar 

  • Kovalenko, A., Clemens, J.D., and Savatenkov, V., Petrogenetic constraints for the genesis of Archaean sanukitoid suites: geochemistry and isotopic evidence from Karelia, Baltic Shield, Lithos, 2005, vol. 79, pp. 147–160.

    Article  Google Scholar 

  • Kovalenko, A.V., Sm-Nd data as a key to the origin of the Archean sanukitoids of Karelia, Baltic Shield, Geochem. Int., 2008, vol. 46, no. 4, pp. 367–377.

    Article  Google Scholar 

  • Kozlov, N.E., Sorokhtin, N.O., Glaznev, V.N., et al., Geologiya arkheya Baltiiskogo shchita (Archean Geology of the Baltic Shield), St. Petersburg: Nauka, 2006.

    Google Scholar 

  • Krogh, T.E., A low-contamination method for hydrothermal dissolution of zircon and extraction of U and Pb for isotopic age determinations, Geochim. Cosmohim. Acta, 1973, vol. 37, pp. 485–494.

    Article  Google Scholar 

  • Kudryashov, N.M., Bayanova, T.B., Gavrilenko, B.V., et al., Archaean geochronology of the Kola Region (North-Eastern Baltic Shield), in Extended Abstracts of the 4th Archean Symposium. AGSO Geosci. Australia Record, 2001, Vol. 37, pp. 58–60.

    Google Scholar 

  • Kudryashov, N.M., Gavrilenko, B.V., and Apanasevich, E.A., Age of the rocks of the Archean Kolmozero-Voron’ya Greenstone Belt: new U-Pb data, in Geology and Minerals of the North-Western and Central Russia. Proceedings of 10th K.O. Krats Conference Apatity: 1999, pp. 66–70.

    Google Scholar 

  • Kudryashov, N.M. and Mokrushin, A.V., Mesoarchean gabbroanorthosite magmatism of the Kola Region: petrochemical, geochronological, and isotope-geochemical data, Petrology, 2011, vol. 19, no. 2, pp. 167–182.

    Article  Google Scholar 

  • Larionova, Yu.O., Samsonov, A.V., and Nosova, A.A., The Rb-Sr geochronology and isotopic geochemistry of orehosting rocks and wall-rock metasomatites of the mesothermal Taloveis Gold Deposit, Western Karelia, Dokl. Earth Sci., 2004, vol. 396, no. 4, pp. 525–528.

    Google Scholar 

  • Larionova, Yu.O., Samsonov, A.V., and Shatagin, K.N., Sources of Archean sanukitoids (high-Mg subalkaline granitoids) in the Karelian Craton: Sm-Nd and Rb-Sr isotopic-geochemical evidence, Petrology, 2007, vol. 15, no. 6, pp. 571–593.

    Article  Google Scholar 

  • Laurent, O., Martin, H., Doucelance, R., et al., Geochemistry and petrogenesis of high-K “sanukitoids” from the Bulai Pluton, Central Limpopo Belt, South Africa: implications for geodynamic changes at the Archaean-Proterozoic Boundary, Lithos, 2011, vol. 123, pp. 73–91.

    Article  Google Scholar 

  • Levchenkov, O.A., Levsky, L.K., Nordgulen, O., et al., U-Pb zircon ages from Sorvaranger, Norway, and the western part of the Kola Peninsula, Russia, in Geology of the Eastern Finmark-Western Kola Peninsula Region Proceeding of the 1-st Int. Barents Symposium, Trondheim: 1995, pp. 29–47.

    Google Scholar 

  • Lobach-Zhuchenko, S.B., Rollinson, H.R., Chekulaev, V.P., et al., The Archaean sanukitoid series of the Baltic Shield: geological setting, geochemical characteristics and implications for their origin, Lithos, 2005, vol. 79, pp. 107–128.

    Article  Google Scholar 

  • Lobach-Zhuchenko, S.B., Guseva, N.S., Kovalenko, A.V., and Krylov, I.N., Geochemistry and neodymium isotopic composition of the Late Archean high-magnesium granitoids of the Kostomuksha Block, Western Karelia, Baltic Shield, Geochem. Int., 2005a, vol. 43, no. 6, pp. 525–543.

    Google Scholar 

  • Lobach-Zhuchenko, S.B., Chekulaev, V.P., Krylov, I.N., et al., Archean automagmatic breccia of the Panozero Pluton, Central Karelia, Baltic Shield, Dokl. Earth Sci., 2005b, vol. 401, no. 2, pp. 203–207.

    Google Scholar 

  • Lobach-Zhuchenko, S.B., Rollinson, H., Chekulaev, V.P., et al., Geology and petrology of the Archean high-K and high-Mg Panozero Massif, Central Karelia, Petrology, 2007, vol. 15, pp. 459–487.

    Article  Google Scholar 

  • Lobach-Zhuchenko, S.B., Rollinson, H., Chekulaev, V.P., et al., Petrology of a Late Archaean, highly potassic, sanukitoid pluton from the Baltic Shield: insights into Late Archaean mantle metasomatism, J. Petrol., 2008, vol. 49, no. 2, pp. 393–420.

    Article  Google Scholar 

  • Lobach-Zhuchenko, S.B., Savatenkov, V.M., Kovalenko, A.V., et al., Mantle source of the Archean Panozero Pluton, Karelia: evidence from isotope-geochemical study of rocks and minerals, Geochem. Int., 2010, vol. 48, no. 4, pp. 366–380.

    Article  Google Scholar 

  • Lopez-Escobar, L. and Oyarzun, J.M., Geochemical characteristics of Central Chile granitoids, Contrib. Mineral. Petrol., 1979, vol. 70, no. 4, pp. 439–450.

    Article  Google Scholar 

  • Ludwig, K.R., ISOPLOT—a plotting and regression program for radiogenic-isotope data, Version 2.56, US Geol. Surv. Open-File Rept., 1991, no. 91–445.

    Google Scholar 

  • Ludwig, K.R., ISOPLOT/Ex—a geochronological toolkit for Microsoft Excel, Version 2.05, Berkley Geochronol. Center Sp. Publ., 1999, no. 1a.

    Google Scholar 

  • Mikkola, P., Salminen, P., Torppa, A., and Huhma, H., The 2.74 Ga Likamännikkö Complex in Suomussalmi, East Finland: lost between sanukitoids and truly alkaline rocks?, Lithos, 2011, vol. 125, pp. 716–728.

    Article  Google Scholar 

  • Mints, M.V., Glaznev, V.N., Konilov, A.N., et al., Rannii dokembrii severo-vostoka Baltiiskogo shchita: paleogeodinamika, stroenie i evolyutsiya kontinental’noi kory (Early Precambrian of the Northeastern Baltic Shield: Paleogeodynamics, Structure, and Evolution of Continental Crust), Moscow: Nauchnyi mir, 1996.

    Google Scholar 

  • Mints, M.V., Suleimanov, A.K., Babayants, P.S., et al., Glubinnoe stroenie, evolyutsiya i poleznye iskopaemye rannedokembriiskogo fundamenta vostochno-evropeiskoi platformy (Deep Structure, Evolution, and Minerals of the Early Precambrian Basement of the East European Platform), Moscow: GEOKART, GEOS, 2010, vol. 1, part 4.

    Google Scholar 

  • Mitchell, A. and Garson, M., Global’naya tektonicheskaya pozitsiya mineral’nykh mestorozhdenii (Global Tectonic Position of Mineral Deposits), Moscow: Mir, 1984.

    Google Scholar 

  • Mitrofanov, F.P., Zozulya, D.R., Bayanova, T.B., and Levkovich, N.V., The world’s oldest anorogenic alkali granitic magmatism in the Keivy Structure on the Baltic Shield, Dokl. Earth Sci., 2000, vol. 374, no. 7, pp. 1145–1148.

    Google Scholar 

  • Moyen, J.-F., Martin, H., Jayananda M. Multi-element geochemical modelling of crust-mantle interactions during Late Archaean crustal growth: the Closepet Granite (South India), Precambrian Res., 2001, vol. 112, pp. 87–105.

    Article  Google Scholar 

  • Oliveira, M.A., Dall’Agnol, R., Althoff, F.J., and Leite, A.A.S., Mesoarchean sanukitoid rocks of the Rio Maria Granite-Greenstone Terrane, Amazonian Craton, Brazil, J. South Am. Earth Sci., 2009, vol. 27, pp. 146–160.

    Article  Google Scholar 

  • Palme, H. and O’Neill, H.St.C., Cosmochemical estimates of mantle composition, in Treatise on Geochemistry, 2003, vol. 2, pp. 1–38.

    Google Scholar 

  • Perchuk, L.L., Ravnovesie porodoobrazuyushchikh mineralov (Equilibrium of Rock-Forming Minerals), Moscow: Nauka, 1970.

    Google Scholar 

  • Perfite, M.R., Brueckner, H., Lawrence, J.B., and Kay, R.W., Trace elements and isotopic variations in a zoned pluton and associated volcanic rocks, Unalaska Island, Alaska: a model fractionation in the Aleutian calcalkaline suite, Contrib. Mineral. Petrol., 1980, vol. 73, no. 1, pp. 69–87.

    Article  Google Scholar 

  • Petford, N. and Atherton, M., Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru, J. Petrol., 1996, vol. 37, pp. 1491–1521.

    Article  Google Scholar 

  • Petrovskii, M.N. and Vinogradov, A.N., Geology of the Late Archean Porosozero granite massif, Kola Peninsula, Vestn. Murm. Gos. Tekhn. Univ., 2002, vol. 5, no. 1, pp. 91–98.

    Google Scholar 

  • Prouteau, G., Scaillet, B., Pichavant, M., and Maury, R., Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust, Nature, 2001, vol. 410, pp. 197–200.

    Article  Google Scholar 

  • Samsonov, A.V., Bibikova, E.V., Larionova, Yu.O., et al., Magnesian granitoids (sanukitoids) of the Kostomuksha Area, Western Karelia: petrology, geochronology, and tectonic environment of formation, Petrology, 2004, vol. 12, no. 5, pp. 437–468.

    Google Scholar 

  • Samsonov, A.V., Bogina, M.M., Bibikova, E.V., et al., The relationship between adakitic, calc-alkaline volcanic rocks and TTGs: implications for the tectonic setting of the Karelian Greenstone Belts, Baltic Shield, Lithos, 2005, vol. 79, pp. 83–106.

    Article  Google Scholar 

  • Savatenkov, V.M., Lobach-Zhuchenko, S.B., and Kovalenko, A.V., Isotopic (Sr, Nd, Pb) characteristics of the Archean metasomatized mantle—source of the Panozero Massif, Karelia, Petrology, 2010, vol. 18, no. 2, pp. 177–182.

    Article  Google Scholar 

  • Savrothaman, H., Archaean High-Mg Granitoids of Mantle Origin in the Eastern Dharwar Craton of Andhra Pradesh, J. Geol. Soc. India, 2001, vol. 58, pp. 261–268.

    Google Scholar 

  • Shimoda, G., Tatsumi, Y., Nohda, S., et al., Setouchi high-Mg andesite revisited: geochemical evidence for melting of subducting sediments, Earth Planet. Sci. Lett., 1998, vol. 160, pp. 479–492.

    Article  Google Scholar 

  • Shirey, S.B. and Hanson, G.N., Mantle-derived Archaen monzodiorites and trachyandesites, Nature, 1984, vol. 310, pp. 222–224.

    Article  Google Scholar 

  • Skublov, S.G., Lobach-Zhuchenko, S.B., Guseva, N.S., et al., Rare earth and trace element distribution in zircons from miaskite lamproites of the Panozero Complex, Central Karelia, Geochem. Int., 2009, vol. 47, no. 9, pp. 901–913.

    Article  Google Scholar 

  • Smithies, R.H. and Champion, D.G., Archaean high-Mg diorite suite: links to tonalite-trondhjemite-granodiorite magmatism and implications for Early Archaean crustal growth, J. Petrol., 2000, vol. 41, no. 12, pp. 1653–1671.

    Article  Google Scholar 

  • Stacey, J.S. and Kramers, J.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221.

    Article  Google Scholar 

  • Steenfelt, A., Garde, A.A., and Moyen, J-F., Mantle wedge involvement in the petrogenesis of Archaean grey gneisses in West Greenland, Lithos, 2005, vol. 79, pp. 207–228.

    Article  Google Scholar 

  • Steiger, R.H. and Jäger, E., Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1977, vol. 36, no. 3, pp. 359–362.

    Article  Google Scholar 

  • Stern, R.A. and Hanson, G.N., Archaean high-Mg granodiorite: a derivation of light rare earth element-enriched monzodiorite of mantle origin, J. Petrol., 1991, vol. 32, pp. 201–238.

    Article  Google Scholar 

  • Stevenson, R., Henry, P., and Gariepy, C., Assimilationfractional crystallization origin of Archean sanukitoid suites: Western Superior Province, Canada, Precambrian Res., 1999, vol. 96, pp. 83–99.

    Article  Google Scholar 

  • Sutcliffe, R.H., Smith, A.R., Doherty, W., and Barnett, R.L., Mantle derivation of Archean amphibole-bearing granitoid and associated mafic rocks: evidence from the Southern Superior Province, Canada, Contrib. Mineral. Petrol., 1990, vol. 105, pp. 255–274.

    Article  Google Scholar 

  • Tatsumi, Y., Origin of high-magnesian andesites in the Setouchi Volcanic Belt, southewest Japan, II. Melting phase relations at high pressures, Earth Planet. Sci. Lett., 1982, vol. 60, pp. 305–317.

    Article  Google Scholar 

  • Tatsumi, Y. and Ishizaka, K., Origin of high-magnesian andesites in the Setouchi Volcanic Belt, Southewest Japan, I. Petrographical and chemical characteristics, Earth Planet. Sci. Lett., 1982, vol. 60, pp. 293–304.

    Article  Google Scholar 

  • Tauson, L.V., Geokhimicheskie tipy i potentsial’naya rudonosnost’ granitoidov (Geochemical Types and Ore Potential of Granitoids), Moscow: Nauka, 1977.

    Google Scholar 

  • Tsvetkov, A.A., Magmatism of the Aleutian Island Arc and problems of petrogenesis of island-arc rocks, Izv. Akad. Nauk SSSR, Ser. Geol., 1983, no. 4, pp. 3–19.

    Google Scholar 

  • Vetrin, V.R., Nordgulen, ene-bearing tonalite-granodiorite-monzonite series on the northern Baltic Shield: correlation and petrology, in Geology of the Eastern Finmark-Western Kola Peninsula Region. Proceeding of the 1-st Int. Barents Symposium, Trondheim: 1995, pp. 65–74.

    Google Scholar 

  • Vetrin, V.R., Granitoidy Murmanskogo bloka (Granitoids of the Murmansk Block), Apatity: Izd. KFAN SSSR, 1984.

    Google Scholar 

  • Vrevsky, A.B., Matrenichev, V.A., and Ruzh’eva, M.S., Petrology of komatiites from the Baltic Shield and isotope geochemical evolution of their mantle sources, Petrology, 2003, vol. 11, no. 6, pp. 532–562.

    Google Scholar 

  • Wang, Y., Zhng, Y., Zhao, G., et al., Zircon U-Pb geochronological and geochemical constraints on the petrogenesis of the Taishan sanukitoids (Shandong): implications for Neoarchean subduction in the Eastern Block, North China Craton, Precambrian Res., 2009, vol. 174, pp. 273–286.

    Article  Google Scholar 

  • Whalen, J.B., Percival, J.A., McNicoll, V.J., and Longstaffe, F.J., Geochemical and isotopic (Nd-O) evidence bearing on the origin of Late- to postorogenic high-K granitoid rocks in the Western Superior Province: implications for Late Archean tectonomagmatic processes, Precambrian Res., 2004, vol. 132, pp. 303–326.

    Article  Google Scholar 

  • Wiendenbeck, M. and Watkins, K.P., A time scale for granitoid emplacement in the Archean Murchison Province, Western Australia, by single zircon geochronology, Precambrian Res., 1993, vol. 61, pp. 1–26.

    Article  Google Scholar 

  • Williams, H., Hoffman, P.F., Lewry, J.F., Monger, J.W.H., and Rivers, T., Anatomy of North America: thematic geologic portrayals of the continent, Tectonophysics, 1991, vol. 187, pp. 117–134.

    Article  Google Scholar 

  • Wyman, D.A., Kerrich, R., and Groves, D.I., Lode gold deposits and Archean mantle plume-island arc interaction, Abitibi Subprovince, Canada, J. Geol., 1999, vol. 107, pp. 715–725.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Kudryashov.

Additional information

Original Russian Text © N.M. Kudryashov, M.N. Petrovsky, A.V. Mokrushin, D.V. Elizarov, 2013, published in Petrologiya, 2013, Vol. 21, No. 4, pp. 389–413.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryashov, N.M., Petrovsky, M.N., Mokrushin, A.V. et al. Neoarchean sanukitoid magmatism in the Kola region: Geological, petrochemical, geochronological, and isotopic-geochemical data. Petrology 21, 351–374 (2013). https://doi.org/10.1134/S0869591113030041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591113030041

Keywords

Navigation