Skip to main content
Log in

Native silicon and iron silicides in the Dhofar 280 lunar meteorite

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The Dhofar 280 lunar highland meteorite is the first one in which native silicon was identified in association with iron silicides. This association is surrounded by silicate material enriched in Si, Na, K, and S and occurs within an impact-melt matrix. Compared to the meteorite matrix, the objects with native Si and the silicate material around them show high Al-normalized concentrations of volatile elements and/or elements with low sensitivity to oxygen but are not any significantly enriched in refractory lithophile elements. Some lithophile elements (V, U, Sm, Eu, and Yb) seem to be contained in reduced forms, and this predetermines REE proportions atypical of lunar rocks and a very low Th/U ratio. The admixture of siderophile elements (Ni, Co, Ge, and Sb) suggests that the Si-bearing objects were contaminated with meteorite material and were produced by the impact reworking of lunar rocks. The high concentrations of volatile elements suggest that the genesis of these objects could be related to the condensation of silicate vapor generated during meteorite impacts. The reduction of silicon and other elements could take place in an impact vapor cloud, with the subsequent condensation of these elements together with volatile components. On the other hand, condensates of silicate vapor could be reduced by impact reworking of impact breccias. Impact-induced vaporization and condensation seem not to play any significant role in forming the composition of the lunar crust, but the contents of the products of such processes can be locally relatively high. The greatest amounts of silicate vapor were generated during significant impact events. For example, more than 70% of the total mass of lunar material evaporated in the course of impact events should have resulted from the collision of the Moon with a cosmic body that produced the Moon’s largest South Pole-Aitken basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afanaskin, A.Yu., Ershov, A.V., Mashin, A.I., and Nezhdanov, A.V., Influence of Conditions of Obtaining Films of Amorphous Silicon for Raman Scattering Spectrometry of Nanocrystalline Inclusions Synthesized by Laser Annealing, in Proc. 15th International Symposium “Nanophysics and Nanoelectronics,” 2011, pp. 407–408.

  • Anand, M., Taylor, L.A., Nazarov, M.A., et al., Space Weathering on Airless Planetary Bodies: Clues from Lunar Mineral Hapkeite, Proc. National Academy Sci. USA, 2004, vol. 101, no. 18, pp. 6847–6851.

    Article  Google Scholar 

  • Anosova, M.O., Nazarov, M.A., Demidova, S.I., et al., Trace Element Chemistry of a Silicon-Bearing Association in the Dhofar 280 Lunar Meteorite, Lunar Planet. Sci. Conf., 2012, vol. 43, 1079.pdf.

  • Bazilevskii, A.T., Ivanov, B.A., Florenskii, K.P., et al., Udarnye kratery na Lune i planetakh (Impact Craters on the Moon and Planets), Moscow: Nauka, 1983.

    Google Scholar 

  • Bird, J.M. and Weathers, M.S., Josephinite: Specimens from the Earth’s Core, Earth Planet. Sci. Lett., 1975, vol. 28, no. 1, pp. 51–64.

    Article  Google Scholar 

  • Chyba, C.F., Terrestrial Mantle Siderophiles and the Lunar Impact Record, Icarus, 1991, vol. 92, pp. 217–233.

    Article  Google Scholar 

  • Demidova, S.I., Nazarov, M.A., Lorents, K.A., et al., Chemical Composition of Lunar Meteorites and the Lunar Crust, Petrology, 2007, vol. 16, no. 4, pp. 386–408.

    Article  Google Scholar 

  • Dikov, Yu.P., Bogatikov, O.A., Barsukov, V.L., et al., Some Features of the Main Element Conditions in Surface Layers of the Regolith Particles of the Luna Automatic Stations Samples: X-Ray Photoelectronic Spectroscopy Studies, Proc. Lunar Planet. Sci. Conf., 1978, vol. 9, pp. 2111–2124.

    Google Scholar 

  • Essene, E.J. and Fisher, D.C., Lightning Strike Fusion: Extreme Reduction and Metal-Silicate Liquid Immiscibility, Science, 1986, vol. 234, pp. 189–193.

    Article  Google Scholar 

  • Faraci, G., Gibilisco, S., Russo, P., et al., Si/SiO2 Core Shell Clusters Proved by Raman Spectroscopy, Europ. Phys. J., 2005, vol. 46, pp. 457–461.

    Google Scholar 

  • Fernandes, V.A., Anand, M., Burgess, R., and Taylor, L.A., Ar-Ar Studies of Dhofar Clast-Rich Feldspathic Highland Meteorites: 025, 026, 280, 303, Lunar Planet. Sci. Conf., 2004, vol. 35, 1514.pdf.

  • Floss, C., Fogel, R.A., Lin, Y., and Kimura, M., Diopside-Bearing EL6 EET 90102: Insights from Rare Earth Element Distributions, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 543–555.

    Article  Google Scholar 

  • Gaisler, S.V., Semenova, O.I., Sharafutdinov, R.G., and Kolesov, B.A., Analysis of Raman Spectra of Amorphous-Nanocrystalline Silicon Films, Phys. Solid State, 2004, vol. 46, no. 8, pp. 1528–1532.

    Article  Google Scholar 

  • Haskin, L. and Warren, P., Lunar Chemistry, in Lunar Source Book, Cambridge: University Press, 1991.

    Google Scholar 

  • Herzog, G.F., Delaney, J.S., Lindsay, F., et al., Magnesium and Silicon Isotopes in HASP Glasses from Apollo-16 Lunar Soil 61241, Lunar Planet. Sci., 2012, vol. 43, no. 1579.pdf.

  • Hsu, W., Geochemical and Petrographic Studies of Oldhamite, Diopside and Roedderite in Enstatite Meteorites, Meteoritics Planet. Sci., 1998, vol. 33, pp. 291–301.

    Article  Google Scholar 

  • Hsu, W. and Crozaz, G., Mineral Chemistry and the Origin of Enstatite in Unequilibrated Enstatite Chondrites, Geochim. Cosmochim. Acta, 1998, vol. 62, pp. 1993–2004.

    Article  Google Scholar 

  • Kazanas, E.K. and Tsvetkov, E.K., Termodinamika ispareniya oksidov (Thermodynamics of Oxide Evaporation), Moscow: Izd-vo LKI, 2008.

    Google Scholar 

  • Keller, L.P. and McKay, D.S., Micrometer-Sized Glass Spheres in Apollo-16 Soil 61181: Implications for Impact Volatilization and Condensation, Proc. Lunar Planet. Sci. Conf., 1992, vol. 22, pp. 137–141.

    Google Scholar 

  • Korzhinskii, M.A., Tkachenko, S.I., Bulgakov, R.F., and Shmulovich, K.I., Condensate Compositions and Native Metals in Sublimates of High-Temperature Gas Streams of Kudryavyi Volcano, Iturup Island, Kuril Islands, Geochem. Int., 1996, no. 12, pp. 1057–1064.

  • Lodders, K. and Feggley, B., Lanthanide and Actinide Chemistry at High C/O Ratios in the Solar Nebula, Earth Planet Sci. Lett., 1993, vol. 117, pp. 125–145.

    Article  Google Scholar 

  • Markova, O.M., Yakovlev, O.I., Semenov, G.A., and Belov, A.N., Some General Results of Experiments on Evaporation of Natural Melts in a Knudesen Cell, Geokhimiya, 1986, no. 11, pp. 1559–1569.

  • Marshintsev, V.K., Shchelchkova, S.G., Zol’nikov, G.V., and Voskresenskaya, V.B., New Data on Moissanite from Yakutian Kimberlites, Geol. Geofiz., 1967, no. 12, pp. 22–32.

  • Melosh, H.J., Impact Cratering: A Geologic Process, Oxford: Oxford University Press, 1989.

    Google Scholar 

  • Morgan, J.W., Walker, R.J., Brandon, A.D., and Horan, M.F., Siderophile Elements in Earth’s Upper Mantle and Lunar Breccias: Data Synthesis Suggests Manifestations of the Same Late Influx, Meteoritics Planet. Sci, 2001, vol. 36, pp. 1257–1275.

    Article  Google Scholar 

  • Nazarov, M.A., Ntaflos, Th., Brandstaetter, F., and Kurat, G., FeO/MnO Ratios of Lunar Meteorite Minerals, Lunar Planet. Sci. Conf., 2009, vol. 40, 1059.pdf.

  • Nazarov, M.A., Demidova, S.I., Ntaflos, Th., and Brandstaetter, F., Native Silicon, Fe-Silicides and a Condensate Lithology in the Dhofar 280 Lunar Meteorite, Lunar Planet. Sci. Conf., 2012, vo. 43, 1073.pdf.

  • Nazarov, M.A., Demidova, S.I., and Taylor, L.A., Trace Element Chemistry of Lunar Highland Meteorites from Oman, Lunar Planetary Sci. Conf., 2003, vol. 34, no. 1636.pdf.

  • Nazarov, M.A., Badyukov, D.D., Lorents, K.A., and Demidova, S.I., The Flux of Lunar Meteorites onto the Earth, Solar Syst. Res., 2004, vol. 38, no. 1, pp. 49–58.

    Article  Google Scholar 

  • Nazarov, M.A., Aranovich, L.Ya., Demidova, S.I., et al., Aluminous Enstatites of Lunar Meteorites and Deep-Seated Lunar Rocks, Petrology, 2011, vol. 19, no. 1, pp. 13–25.

    Article  Google Scholar 

  • Nishiizumi, K., Hillegonds, D.J., McHargue, L.R., and Jull, A.J.T., Exposure and Terrestrial Histories of New Lunar and Martian Meteorites, Lunar Planet. Sci. Conf., 2004, vol. 35, 1130.pdf.

  • Novgorodova, M.I., Boronikhin, V.A., Generalov, M.E., and Kramer, Kh.O., Native Silicon in Association with Native Gold and Other Metals, Dokl. Akad. Nauk SSSR, 1989, vol. 309, no. 5, pp. 1182–1185.

    Google Scholar 

  • Novoselova, L.N. and Bagdasarov, E.A., New Data on Iron Silicides, Zap. Vseross. Mineral. O-va, 1979, vol. 106, no. 3, pp. 326–333.

    Google Scholar 

  • Pankov, V.Yu. and Spetsius, Z.V., Inclusions of Iron Silicides and Native Silicon in Moissanite from the Sytykan Kimberlite Pipe, Dokl. Akad. Nauk SSSR, 1989, vol. 305, no. 3, pp. 704–708.

    Google Scholar 

  • Rowan, L.R. and Ahrens, T.J., Observations of Impact-Induced Molten Metal-Silicate Partitioning, Earth Planet. Sci. Lett., 1994, vol. 122, pp. 71–88.

    Article  Google Scholar 

  • Sazonov, A.M., Zvyagina, E.A., Leont’ev, S.I., et al., Associations of Micrometer- and Nanometer-Sized Segregations of Precious-Metal Minerals in Ores, Zh. Sibirsk. Feder. Univ., Ser. Tekhn. Tekhnol., 2008, no. 1, pp. 17–32.

  • Shearer, C.K., Hess, P.C., Wieczorek, M.A., et al., Thermal and Magmatic Evolution of the Moon, Rev. Mineral. Geochem, 2006, vol. 60, pp. 365–518.

    Article  Google Scholar 

  • Shukolyukov, Yu.A., Nazarov, M.A., and Ott, U., Noble Gases in New Lunar Meteorites from Oman: Irradiation History, Trapped Gases, and Cosmic-Ray Exposure and K-Ar Ages, Geochem. Int., 2004, vol. 42, no. 11, pp. 1001–1017.

    Google Scholar 

  • Spicuzza, M.J., Valley, J.W., Fournelle, J., et al., Native Silicon and Fe-Silicides from the Apollo 16 Lunar Regolith: Extreme Reduction, Metal-Silicate Immiscibility, and Shock Melting, Lunar Planet. Sci. Conf., 2011, vol. 42, 2231.pdf.

  • van Achterbergh, E., Ryanm, C.G., and Griffin, W.L., GLITTER: On-Line Interactive Data Reduction for the Laser Ablation ICP-MS Microprobe, Proc. 9th Goldschmidt Conf., Cambridge, 1999, p. 305.

  • Warren, P.H., Lunar Rock-Rain: Diverse Silicate Impact-Vapor Condensates in an Apollo-14 Regolith Breccia, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 3562–3585.

    Article  Google Scholar 

  • Yakovlev, O.I., Dikov, Yu.P., and Gerasimov, M.V., Problems of Oxidation and Reduction in Impact Process, Geokhimiya, 1992, no. 12, pp. 1359–1370.

  • Yakovlev, O.I., Gerasimov, M.V., and Dikov, Yu.P., Estimation of Temperature Conditions for the Formation of HASP and GASP Glasses from the Lunar Regolith, Geokhimiya, 2011, no. 3, pp. 227–238.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nazarov.

Additional information

Original Russian Text © M.A. Nazarov, S.I. Demidova, M.O. Anosova, Yu.A. Kostitsyn, Th. Ntaflos, F. Brandstaetter, 2012, published in Petrologiya, 2012, Vol. 20, No. 6, pp. 560–573.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, M.A., Demidova, S.I., Anosova, M.O. et al. Native silicon and iron silicides in the Dhofar 280 lunar meteorite. Petrology 20, 506–519 (2012). https://doi.org/10.1134/S0869591112060021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591112060021

Keywords

Navigation