Skip to main content
Log in

Formation and upwelling of mantle diapirs through the cratonic lithosphere: Numerical thermomechanical modeling

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This paper reports the results of the numerical modeling of gravitationally instable processes in the lithospheric mantle of ancient cratons. The gravitational instability is considered as a result of melting at the lithosphere base owing to its local heating by anomalous mantle. Modeling was based on a finite element method in 2D formulation and took into account the geological structure and thermomechanical parameters of the lithosphere of the Siberian platform. Numerical results revealed the main tendencies in the mantle diapirisim of the mafic and ultramafic magma ascending through the “cold” high-viscosity lithosphere. It was shown that the shape of diapiric magmatic bodies is controlled by realistic visco-elastic-plastic rheology of lithosphere. The ascent of diapir in lithosphere was modeled for diverse regimes differing in duration, temperature field, and upwelling depth. It was concluded that the ascent of melt through lithosphere to the crust-mantle boundary is mainly controlled by rheology, and conditions of oscillatory diapirism with recurrent magma replenishments were modeled. Modeling results may shed light on some features related to the trap magmatism of the Siberian igneous province. The duration and rate of magma upwelling as well as the parameters of periodical magma upwelling were estimated and attempt was made to explain the high-velocity seismic anomalies that were recorded in the subcrustal regions of the Siberian platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashchepkov, I.V., Pokhilenko, N.P., Vladykin, N.V., Logvinova, A.M., Afanasiev, V.P., Pokhilenko, L.N., Kuligin, S.S., Malygina, E.V., Alymova, N.A., Kostrovitsky, S.I., Rotman, A.Y., Mityukhin, S.I., Karpenko, M.A., Stegnitsky, Y.B., and Khemelnikova, O.S., Structure and Evolution of the Lithospheric Mantle Beneath Siberian Craton, Thermobarometric Study, Tectonophysics, 2010, vol. 485, pp. 17–41.

    Article  Google Scholar 

  • Brey, G.P., Bulatov, V.K., Girnis, A.V., and Lahaye, Y., Experimental Melting of Carbonated Peridotite at 6–10 GPa, J. Petrol., 2008, vol. 49, no. 4, pp. 797–821.

    Article  Google Scholar 

  • Bryan, S.E., Peate, I.U., Peate, D.W., Self, S., Jerram, D.A., Mawby, M.R., Marsh, J.S., and Miller, J.A., The Largest Volcanic Eruptions on Earth, Earth Sci. Rev., 2010, vol. 102, pp. 207–229.

    Article  Google Scholar 

  • Burov, E. and Cloetingh, S., Controls of Mantle Plumes and Lithospheric Folding on Modes of Intraplate Continental Tectonics: Differences and Similarities, Geophys. J. Int., 2009, vol. 178, no. 3, pp. 1691–1722.

    Article  Google Scholar 

  • Carter, N.L. and Tsenn, M.C., Flow Properties of Continental Lithosphere, Tectonophysics, 1987, vol. 136, pp. 27–63.

    Article  Google Scholar 

  • Chopra, P.N. and Patterson, M.S., The Role of Water in the Deformation of Dunite, J. Geophys. Res., 1984, vol. 89, pp. 7861–7876.

    Article  Google Scholar 

  • d’Acremont, E., Leroy, S., and Burov, E.B., Numerical Modeling of a Mantle Plume: the Plume-Head-Lithosphere Interaction in the Formation of An Oceanic Large Igneous Province, Earth Planet. Sci. Lett., 2003, vol. 206, pp. 379–396.

    Article  Google Scholar 

  • Dobretsov, N.L., Global Geodynamic Evolution of the Earth and Global Geodynamic Models, Russ. Geol. Geophys., 2010, vol. 51, no. 6, pp. 592–610.

    Article  Google Scholar 

  • Dobretsov, N.L., Borisenko, A.S., Izokh, A.E., and Zhmodik, S.M., A Thermochemical Model of Eurasian Permo-Triassic Mantle Plumes as a Basis for Prediction and Exploration for Cu-Ni-PGE and Rare-Metal Ore Deposits, Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 903–924.

    Article  Google Scholar 

  • Duchkov, A.D., Lysak, S.V., Balobaev, V.T., et al., Teplovoe pole nedr Sibiri (Thermal Field of the Siberian Interior), Novosibirsk: Nauka, 1987.

    Google Scholar 

  • Farnetani, C.G. and Richards, M.A., Numerical Investigations of the Mantle Plume Initiation Model for Flood Basalt Events, J. Geophys. Res., 1994, vol. 99, pp. 13813–13833.

    Article  Google Scholar 

  • Farnetani, C.G., Legras, B., and Tackley, P.J., Mixing and Deformations in Mantle Plumes, Earth Planet. Sci. Lett., 2002, vol. 196, pp. 1–15.

    Article  Google Scholar 

  • Gerya, T.V. and Burg, J.-P., Intrusion of Ultramafic Magmatic Bodies Into the Continental Crust: Numerical Simulation, Phys. Earth Planet. Inter., 2007, vol. 160, pp. 124–142.

    Article  Google Scholar 

  • Hansen, F.D. and Carter, N.L., Creep of Selected Crustal Rock at 1000 MPa, Trans. Amer. Geophys. Union, 1982, vol. 63, p. 437.

  • Iwamori, H., Phase Relations of Peridotites under H2O-Saturated Conditions and Ability of Subducting Plates for Transportation of H2O, Earth Planet. Sci. Lett., 2004, vol. 227, pp. 57–71.

    Article  Google Scholar 

  • Karato, S. and Wu, P., Rheology of the Upper Mantle: a Synthesis, Science, 1993, vol. 260, pp. 771–778.

    Article  Google Scholar 

  • Kennet, B.L.N., Engdahl, E.R., and Buland, R., Constraints on Seismic Velocities in the Earth from Travel Times, Geophys. J. Int., 1995, vol. 122, pp. 108–124.

    Article  Google Scholar 

  • Kirby, S.H., Rheology of the Lithosphere, Rev. Geophys., 1983, vol. 21, pp. 1458–1487.

    Article  Google Scholar 

  • Kirdyashkin, A.A., Dobretsov, N.L., Kirdyashkin, A.G., Gladkov, I.N., and Surkov, N.V., Hydrodynamic Processes Associated with Plume Rise and Conditions for Eruption Conduit Formation, Russ. Geol. Geophys., 2005, vol. 46, no. 9, pp. 847–868.

    Google Scholar 

  • Korobeynikov, S.N., Nelineinoe deformirovanie tverdykh tel (Nonlinear Strain Analysis of Solids), Novosibirsk: Izd-vo SO RAN, 2000.

    Google Scholar 

  • Korobeynikov, S.N., Reverdatto, V.V., Polyanskii, O.P., Sverdlova, V.G., and Babichev, A.V., Influence of the Choice of a Rheological Law on Computer Simulation Results of Slab Subduction, Num. An. Appl., 2011, vol. 4, no. 1, pp. 56–70.

    Article  Google Scholar 

  • Korobeynikov, S.N., Reverdatto, V.V., Polyansky, O.P., and Babichev, A.V., Mathematic Modeling of Matter Transfer in the Earth’s Crust, in Tezisy dokladov Vserossiiskoi konferentsii (Abstracts of All-Russian Conference), Perm-Ekaterinburg: UrO RAN, 2008, p. 112.

    Google Scholar 

  • Kronenberg, A.K. and Tullis, J., Flow Strength of Quartz Aggregates: Grain Size and Pressure Effects Due to Hydrolytic Weakening, J. Geophys. Res., 1984, vol. 89, pp. 4281–4297.

    Article  Google Scholar 

  • Litasov, K. and Ohtani, E., The Solidus of Carbonated Eclogite in the System CaO-Al2O3-MgO-SiO2-Na2O-CO2 to 32 GPa and Carbonatite Liquid in the Deep Mantle, Earth Planet. Sci. Lett., 2010, vol. 295, nos. 1–2, pp. 115–126.

    Article  Google Scholar 

  • MARC Users Guide. Volume A. Theory and User Information, Santa Ana: MSC Software Corporation, 2010.

  • Mei, S., Bai, W., Hiraga, T., and Kohlstedt, D.L., Influence of Melt on the Creep Behavior of Olivine-Basalt Aggregates under Hydrous Conditions, Earth Planet. Sci. Lett., 2002, vol. 201, pp. 491–507.

    Article  Google Scholar 

  • Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, R., and Hung, S., Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle, Science, 2004, vol. 303, pp. 338–343.

    Article  Google Scholar 

  • Ohtani, E. and Zhao, D., The Role of Water in the Deep Upper Mantle and Transition Zone: Dehydration of stagnant Slabs and Its Effects on the Big Manlte Wedge, Russ. Geol. Geophys., 2009, vol. 50, no. 12, pp. 1073–1078.

    Article  Google Scholar 

  • Paton, M.T., Ivanov, A.V., Fiorentini, M.L., McNaughton, N.J., Mudrovska, I., Reznitskii, L.Z., and Demonterova, E.I., Late Permian and Early Triassic Magmatic Pulses in the Angara-Taseeva Syncline, Souther Siberian Traps and their Possible Influence on the Environment, Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 1012–1020.

    Article  Google Scholar 

  • Polyansky, O.P., Babichev, A.V., Korobeynikov, S.N., and Reverdatto, V.V., Computer Modeling of Granite Gneiss Diapirism in the Earth’s Crust: Controlling Factors, Duration, and Temperature Regime, Petrology, 2010, vol. 18, no. 4, pp. 432–446.

    Article  Google Scholar 

  • Polyansky, O.P., Korobeynikov, S.N., Babichev, A.V., Reverdatto, V.V., and Sverdlova, V.G., Computer Modeling of Granite Magma Diapirism in the Earth’s Crust, Dokl. Earth Sci., 2009, vol. 429, no. 8, pp. 1380–1384.

    Article  Google Scholar 

  • Priestley, K. and Debayle, E., Seismic Evidence for a Moderately Thick Lithosphere beneath the Siberian Platform, Geophys. Rev. Lett., 2003, vol. 30, no. 3, p. 1118. doi: 1029/2002GL015931.

    Article  Google Scholar 

  • Ranalli, G. and Murphy, D.C., Rheological Stratification of the Lithosphere, Tectonophysics, 1987, vol. 132, pp. 281–295.

    Article  Google Scholar 

  • Ranalli, G., Rheology of the Earth, London: Chapman and Hall, 1995.

    Google Scholar 

  • Romanowicz, B. and Gung, Y.C., Superplumes from the Core-Mantle Boundary to the Base of the Lithosphere, Science, 2002, vol. 296, pp. 513–516.

    Article  Google Scholar 

  • Sharapov, V.N., Akimtsev, V.A., Dorovskii, V.N., Perepechko, Yu.V., and Cherepanov, A.N., Dinamika razvitiya rudno-magmaticheskikh sistem zon spredinga (Dynamics of the Evolution of the Ore-Magmatic Systems of the Spreading Zones), Novosibirsk: SO RAN, NITs OIGGM, 1999.

    Google Scholar 

  • Simon, K., Huismans, R.S., and Beaumont, C., Dynamical Modeling of Lithospheric Extension and Small-Scale Convection: Implications for Magmatism During the Formation of Volcanic Rifted Margins, Geophys. J. Int., 2009, vol. 176, pp. 327–350.

    Article  Google Scholar 

  • Sobolev, A.V., Sobolev, S.V., Kuz’min, D.V., Malitch, K.N., and Petrunin, A.G., Siberian Meymechites: Origin and Relation to Flood Basalts and Kimberlites, Russ. Geol. Geophys., 2009, vol. 50, no. 12, pp. 999–1033.

    Article  Google Scholar 

  • Suvorov, V.D., Melnik, E.A., Thybo, H., Perchuć, E., and Parasotka, B.S., Seismic Velocity Model of the Crust and Uppermost Mantle Around the Mirnyi Kimberlite Field in Siberia, Tectonophysics, 2006, vol. 420, pp. 49–73.

    Article  Google Scholar 

  • Suvorov, V.D., Mishen’kina, Z.R., and Mel’nik, E.A., Upper Mantle Roots of Siberian Craton Basement structures Along the RIFT DSS Profile, Geol. Geofiz., 2010, vol. 51, no. 8, pp. 885–897.

    Google Scholar 

  • Svensen, H., Planke, S., Polozov, A.G., Schmidbauer, N., Corfu, F., Podladchikov, Y.Y., and Jamtveit, B., Siberian Gas Venting and the End-Permian Environmental Crisis, Earth Planet. Sci. Lett., 2009, vol. 277, pp. 490–500.

    Article  Google Scholar 

  • Weinberg, R.F. and Podladchikov, Y., Diapiric Ascent of Magmas Through Power Law Crust and Mantle, J. Geophys. Res., 1994, vol. 99, pp. 9543–9559.

    Article  Google Scholar 

  • Wilks, K.R. and Carter, N.L., Rheology of Some Continental Lower Crustal Rocks, Tectonophysics, 1990, vol. 182, pp. 57–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Polyansky.

Additional information

Original Russian Text © O.P. Polyansky, S.N. Korobeynikov, A.V. Babichev, V.V. Reverdatto, 2012, published in Petrologiya, 2012, Vol. 20, No. 2, pp. 136–155.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyansky, O.P., Korobeynikov, S.N., Babichev, A.V. et al. Formation and upwelling of mantle diapirs through the cratonic lithosphere: Numerical thermomechanical modeling. Petrology 20, 120–137 (2012). https://doi.org/10.1134/S086959111202004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959111202004X

Keywords

Navigation