Skip to main content
Log in

Mesoarchean gabbroanorthosite magmatism of the Kola region: Petrochemical, geochronological, and isotope-geochemical data

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents results of petrochemical, geochemical, and isotope-geochemical study of the Patchemvarek and Severnyi gabbroanorthosite massifs of the Kola Peninsula. It was shown that the rocks of these massifs differ from the gabbroanorthosite massifs of the Neoarchean Keivy-Kolmozero Complex in the more calcic composition (70–85% An) of normative plagioclase, and low contents of TiO2, FeO, and Fe2O3. In terms of chemical composition, the gabbroanorthosites of the studied massifs are close to the rocks of the Fiskenässet Complex (Southwestern Greenland) and to the anorthosites of the Vermillion Lake Complex (Canada). U-Pb zircon dating established Mesoarchean ages of 2925 ± 7 and 2935 ± 8 Ma for the gabbroan-orthosites of the Patchemvarek and Severnyi massifs, respectively. It was shown that the gabbroanorthosites of the studied massifs have fairly low REE contents (Ce n = 2.2−4.2, Yb n = 1.6−2.6) and distinct positive Eu anomaly. Comagmatic ultrabasic differentiates have practically unfractionated REE pattern, low total REE contents (Ce n = 1.2, Yb n = 1.1, La/Yb n = 1.3), and no Eu anomaly. The studied samples of the Archean gabbroanorthosites are characterized by positive εNd = +2.68 for the gabbroanorthosites of the Severnyi Massif and from + 2.77 to + 1.66 for the Patchemvarek Massif. Initial strontium isotope ratios are 87Sr/86Sr i = 0.70204 ± 8 and 87Sr/86Sr i = 0.70258 ± 8 for the rocks of the Severnyi and Patchemvarek massifs, respectively. Our study showed that the obtained U-Pb zircon ages for the gabbroanorthosites of the Patchemvarek and Severnyi massifs represent the oldest date for the Kola peninsula, thus marking the oldest, Mesoarchean stage in the evolution of region. The differences in the initial 143Nd/144Nd ratios between the Neoarchean gabbroanorthosites of the Keivy-Kolmozero Complex and the Mesoarchean gabbroanorthosites of the studied massifs suggest the existence of two mantle sources. One of them produced intrusions with an age of 2.67–2.66 Ga, while other was responsible for the formation of massifs with an age of 2.93–2.92 Ga. The composition and temperature of “parental” melt of the gabbroanorthosites were simulated using COMAGMAT-3.5 program. According to the calculations, the parental melt represented aluminous basalt, whose differentiation at T = 1280°C and P = 7 kbar at the crust-mantle boundary was accompanied by plagioclase floatation and formation of “crystal mesh” that produced anorthosite complexes. The gabbroanorthosies of the Patchemvarek and Severnyi massifs were presumably derived from MORB-type basalts of oceanic settings, while the Tsaga, Achinskii, and other anorthosite massifs of the Neoarchean age were generated from subalkaline magma formed in within-plate anorogenic setting. Sm-Nd isotope data suggest the existence of several mantle sources in the Kola region, which produced melts for different-age gabbroanorthosite massifs since Mesoarchean to the middle Paleoproterozoic. The Archean-Early Proterozoic anorthosite magmatism of the Kola region records a complete cycle (∼ 800 Ma) of the formation and consolidation of continental block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amelin, Yu.V. and Semenov, V.S., Nd and Sr Isotopic Geochemistry of Mafic Layered Intrusions in the Eastern Baltic Shield: Implications for the Evolution of Paleoproterozoic Continental Mafic Magmas, Contrib. Mineral. Petrol., 1996, vol. 124, pp. 255–272.

    Article  Google Scholar 

  2. Ariskin, A.A. and Barmina, G.S., COMAGMAT: Development of a Magma Crystallization Model and Its Petrologic Applications, Geochem. Int., 2004, vol. 42, no. Suppl. 1, pp. 1–157.

    Google Scholar 

  3. Ashwal, L.D., Anorthosites, Berlin: Springer, 1993.

    Google Scholar 

  4. Ashwal, L.D., Jacobsen, S.B., Myers, J.S., et al., Sm-Nd Age of the Fiskenasset Anorthosite Complex, West Greenland, Earth Planet. Sci. Lett., 1989, vol. 91, pp. 261–270.

    Article  Google Scholar 

  5. Ashwal, L.D., Morrison, D.A., Phinney, W.C., and Wood, J., Origin of Archean Anothosites: Evidence from the Bad Vermilion Lake Anorthosite Complex, Ontario, Contrib. Mineral. Petrol., 1983, vol. 82, pp. 259–273.

    Article  Google Scholar 

  6. Balashov, Yu.A., Bayanova, T.B., and Mitrofanov, F.P., Isotope Data on the Age Genesis of Layered Basic-Ultrabasic Intrusions in the Kola Peninsula and Northern Karelia, Northeastern Baltic Shield, Precambrian Res., 1993, vol. 64, pp. 197–205.

    Article  Google Scholar 

  7. Balasubrahmanyan, M.N., Geology and Tectonics of India: an Overview, IAGR Mem., 2006, no. 9, p. 204.

  8. Bayanova, T.B., Vozrast repernykh geologicheskikh kompleksov Kol’skogo regiona i dlitel’nost’ protsessov magmatizma (Age of Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes), St. Petersburg: Nauka, 2004.

    Google Scholar 

  9. Belolipetskii, A.P., Gaskel’berg, V.G., Gaskel’berg, L.A., et al., Geologiya i geokhimiya metamorficheskikh kompleksov rannego dokembriya Kol’skogo poluostrova (Geology and Geochemistry of the Early Precambrian Metamorphic Complexes of the Kola Peninsula), Leningrad: Nauka, 1980.

    Google Scholar 

  10. Bhaskar, Rao, Y.J., Kumar, A., Vrevsky, A.B., et al., Sm-Nd Ages of Two Meta-Anorthosite Complexes Around Holenarsipur: Constraints on the Antiquity of Archean Supracrustal Rocks of the Dharwar Craton, Proc. Indian Acad. Sci. (Earth Planet. Sci.), 2000, vol. 109, no. 1, pp. 57–65.

    Google Scholar 

  11. Bogatikov, O.A., Anortozity (Anorthosites), Moscow: Nauka, 1979.

    Google Scholar 

  12. Bogatikov, O.A., Letnikov, F.A., Markov, M.S., and Sukhanov, M.K., Anorthosites and Early Stages in the Earth and Moon Evolution, in Anortozity Zemli i Luny (Anorthosites of the Earth and Moon), Moscow: Nauka, 1984, pp. 246–271.

    Google Scholar 

  13. Bossart, P.I., Meier, M., Oberli, F., and Steiger, R.H., Morphology Versus U-Pb Systematics in Zircon: a High-Resolution Isotopic Study of a Zircon Population from a Variscan Dike in the Central Alps, Earth Planet. Sci. Lett., 1986, vol. 78, no. 4, pp. 339–354.

    Article  Google Scholar 

  14. Compston, W., Williams, I.S., Campbell, I.E., and Gresham, J.J., Zircon Xenocrysts from the Kambalda Volcanics: Age Constraints and Direct Evidence for Older Continental Crust Below the Kambalda-Norseman Greenstones, Earth Planet. Sci. Lett., 1986, vol. 76, nos. 3–4, pp. 299–311.

    Article  Google Scholar 

  15. Condie, K.C., Greenstones Through Time, in Archean Crustal Evolution, Condie K.C., Ed., Amsterdam: Elsevier, 1994, pp. 85–120.

    Chapter  Google Scholar 

  16. Dubrovskii, M.I., Problems of Genesis of Autonomous Anorthosites, Zap. Vseross. Mineral. O-va, 2001, vol. 130, no. 5, pp. 99–106.

    Google Scholar 

  17. Dymek, R.F. and Owens, B.E., Chemical Assembly of Archean Anorthosites from Amphibolite- and Granulite-Facies Terranes, SW Greenland, Contrib. Mineral. Petrol., 2001, vol. 141, pp. 513–528.

    Article  Google Scholar 

  18. Garifulin, L.L. and Bykova, E.V., Ovoid Metagabbroanorthosites and Amphibolites of the Boron’ya Tundras, in Osnovnye i ul’traosnovnye porody Kol’skogo poluostrova (Basic and Ultrabasic Rocks of the Kola Peninsula), Leningrad: Nauka, 1967, pp. 55–62.

    Google Scholar 

  19. Garson, M.S. and Livingstone, A., Is the South Harris Complex in North Scotland a Precambrian Overthrust Slice of Oceanic Crust and Island Arc?, Nature, 1973, vol. 243, pp. 74–76.

    Article  Google Scholar 

  20. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr Isotopic Systematics of River Water Suspended Material: Implications for Crustal Evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  Google Scholar 

  21. Green, T.H., Experimental Study of Anorthosite Genesis at High Pressures, in Petrologiya verkhnei mantii (Petrology of Upper Mantle), Moscow: Mir, 1968, pp. 228–255.

    Google Scholar 

  22. Heaman, L.M., Bowins, R., and Crocket, J., The Chemical Composition of Igneous Zircon Suites: Implications for Geochemical Tracer Studies, Geochim. Cosmochim. Acta, 1990, no. 54, pp. 1597–1607.

  23. Kaulina, T.V., Kislitsyn, R.V., and Apanasevich, E.A., Final Stages of the Metamorphic Evolution of the Tanaelv Belt, Kola Peninsula, Baltic Shield: Evidence from U-Pb Dating on Zircon, Titanite, and Rutile, Geokhimiya, 2004, no. 6, pp. 597–603 [Geochem. Int. (Engl. Transl.), no. 6, pp. 513–519].

  24. Khain, V.E. and Goncharov, M.A., Geodynamic Cycles and Geodynamic Systems of Various Ranks: Their Relationships and Evolution in the Earth’s History, Geotektonika, 2006, no. 5, pp. 3–24 [Geotectonics (Engl. Transl.), vol. 42, no. 5, pp. 327–344].

  25. Kinny, P.D., Williams, I.S., Froude, D.O., et al., Early Archaean Zircon Ages from Ortogneisses and Anorthosites at Mount Narryer, Western Australia, Precambrian Res., 1988, vol. 38, pp. 325–341.

    Article  Google Scholar 

  26. Kozlov, N.E., Sorokhtin, N.O., Glaznev, V.N., et al., Geologiya arkheya Baltiiskogo shchita (Archean Geology of the Baltic Shield), St. Petersburg: Nauka, 2006.

    Google Scholar 

  27. Kröner, A. and Compston, W., Archaean Tonalitic Gneiss of Finish Lapland Revised: Zircon Ion-Microprobe Ages, Contrib. Mineral. Petrol., 1990, vol. 104, no. 3, pp. 348–352.

    Article  Google Scholar 

  28. Krogh, T.E., A Low-Contamination Method for Hydrothermal Dissolution of Zircon and Extraction of U and Pb for Isotopic Age Determinations, Geochim. Cosmohim. Acta., 1973, vol. 37, pp. 485–494.

    Article  Google Scholar 

  29. Kudryashov, N.M., Age of the Archean High-Magnesian Porosozero Massif of the Kolmozero-Voron’ya Greenstone Belt, Kola Peninsula, Izotopnye sistemy i vremya geologicheskikh protsessov. Materialy 4-oi Ross. konf. po izotopn. geokhron. (Isotope Systems and Timing of Geological Processes. Proceedings of 4th Russian Conference on Isotope Geochronology), St. Petersburg, 2009, vol. 1, pp. 289–291.

    Google Scholar 

  30. Kudryashov, N.M., Gavrilenko, B.V., and Apanasevich, E.A., Age of the Rocks of the Archean Kolmozero-Voron’ya Greestone Belt: New U-Pb Data, Materialy 10-oi Molodezh. Konferentsii. Geologiya i poleznye iskopaemye severo-zapada i tsentra Rossii (Proceedings of 10th Youth Conference on Geology and Mineral Resources of the Northeastern and Central Russia), Apatity, 1999, pp. 66–70.

  31. Kushiro, I. and Yoder, G.S., Jr., Reaction between Forsterite and Anorthite at High Pressures, in Petrologiya verkhnei mantii (Petrology of Upper Mantle), Moscow: Mir, 1968, pp. 294–299.

    Google Scholar 

  32. Ludwig, K.R., ISOPLOT/Ex—A Geochronological Toolkit for Microsoft Excel, Version 2.05, Berkeley: Geochronology Center Special Publication, 1999.

    Google Scholar 

  33. Ludwig, K.R., ISOPLOT—A Plotting and Regression Program for Radiogenic-Isotope Data, Version 2.56, Open-file Rept., no. 91-445.

  34. McDonough, W.F. and Sun, S.S., The Composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  35. Mints, M.V., Glaznev, V.N., Konilov, A.N., et al., Rannii dokembrii severo-vostoka Baltiiskogo shchita: paleogeodinamika, stroenie i evolyutsiya kontinental’noi kory (Early Precambrian of the Northeastern Baltic Shield: Paleogeodynamics, Structure, and Evolution of the Continental Crust), Moscow: Nauchnyi Mir, 1996.

    Google Scholar 

  36. Mirskaya, D.D., Petrologiya metabazitov raiona Keiv (Petrology of Metabasic Rocks of the Keivy Area), Leningrad: Nauka, 1968.

    Google Scholar 

  37. Mitrofanov, F.P. and Nerovich, L.I., Timing of Magmatic Crystallization and Metamorphic Transformations in the Pyrshin and Abvar Autonomous Anorthosite Massifs, Lapland Granulite, Petrologiya, 2003, vol. 11, no. 4, pp. 381–390 [Petrology (Engl. Transl.), no. 4, pp. 343–351].

    Google Scholar 

  38. Mitrofanov, F.P., Balaganskii, V.V., Balashov, Yu.A., et al., U-Pb Age of the Gabbroanorthosites of the Kola Peninsula, Dokl. Akad. Nauk, 1993, vol. 331, no. 1, pp. 95–99.

    Google Scholar 

  39. Myers, J.S., The Fiskenasset Anorthosite Complex-a Stratigraphic Key to the Tectonic Evolution of the West Greenland Gneiss Complex 3000-2800 M.Y. Ago, Spec. Publ. Geol. Soc. Aust, 1981, vol. 7, pp. 351–360.

    Google Scholar 

  40. Nerovich, L.I., Kaulina, T.V., Zozulya, D.R., Delenitsin, A.A., and Zhavkov, V.A., Results of Complex Study of the Polymetamorphic Anorthosites of the Lapland Granulite belt: from Petrography to Isotope Methods, Materialy Mezhdunarodnogo petrograficheskogo soveshchaniya “Petrografiya 21-ogo veka” (Proceedings of International Petrographic Conference “Petrography of 21th Century”), Apatity, 2005, vol. 3, pp. 206–208.

    Google Scholar 

  41. Phinney, W.C., Morrison, D.A., and Maczuga, D.E., Tectonic Implications of Anorthosite Occurrences, in Workshop on the Deep Continental Crust of South India, L.D. Ashwal, Ed., Houston: Lunar Planet Inst., 1988, Techn. Rept., no. 88-06, pp. 135–137.

    Google Scholar 

  42. Phinney, W.C., Petrogenesis of Archean Anorthosites, in Workshop on Magmatic Processes of Early Planetary Crusts: Magma Oceans and Stratiform Layered Intrusions, Walker, D. and McCallum, I.S., Eds., Houston: Lunar Planet Inst., 1982, Techn. Rept., no. 82-01, pp. 121–124.

  43. Sharkov, E.V., Anorthosite Association of the Kola Peninsula, in Anortozity Zemli i Luny (Anorthosites of the Earth and Moon), Moscow: Nauka, 1984, pp. 5–61.

    Google Scholar 

  44. Sharkov, E.V., Layered Intrusions of the Sutures of the Deep-Seated Fault Zones by the Example of Gabbroanorthosite Massifs of the Baltic Shield, Izv. Akad. Nauk SSSR, Ser. Geol., 1975, no. 7, pp. 71–81.

  45. Smol’kin, V.F., Fedotov, Zh.A., Neradovskii, Yu.N, et al., Rassloennye intruzii Monchegorskogo rudnogo raiona: petrologiya, orudenenie, izotopiya, glubinnoe stroenie (Layered Intrusions of the Monchegorsk Ore District: Petrology, Mineralization, Isotope, and Deep Structure), Apatity: GI KNTs RAN, 2004, vol. 2.

    Google Scholar 

  46. Stacey, J.S. and Kramers, J.D., Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221.

    Article  Google Scholar 

  47. Steiger, R.H. and Jäger, E., Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology, Earth Planet. Sci. Lett., 1977, vol. 36, no. 3, pp. 359–362.

    Article  Google Scholar 

  48. Sukhanov, M.K., Comparative Analysis of Autonomous Anorthosite Complexes, Izv. Akad. Nauk SSSR, Ser. Geol., 1988, no. 7, pp. 3–18.

  49. Sun, S.S. and McDonough, W.F., Chemical and Isotopic Systematics of Oceanic Basalt: Implications for Mantle Composition and Processes, Magmatism in Ocean Basins, Saunders, A.D. and Norry, M.J., Eds. Geol. Soc. Spec. Publ., 1989, vol. 42, pp. 313–345.

  50. Tsvetkov, A.A. and Sukhanov, M.K., Aluminous Basic Magmas: Models and Reality, Izv. Akad. Nauk SSSR, Ser. Geol., 1991, no. 1, pp. 3–23.

  51. Vrevsky A.B., Matrenichev, V.A., and Ruzh’eva, M.S., Petrology of Komatiites from the Baltic Shield and Isotope Geochemical Evolution of Their Mantle Sources, Petrologiya, 2003, vol. 11, no. 6, pp. 587–617 [Petrology (Engl. Transl.), vol. 11, no. 6, pp. 532–561].

    Google Scholar 

  52. Vrevsky, A., Krimsky, R., and Svetov, S., Isotopic (Nd, O) and Geochemical (REE) Heterogeneity of the Archaean Mantle, Baltic Shield, in Precambrian Crustal Evolution in the North Atlantic Regions, Brewer, T.S., Ed., Geol. Soc. Sp. Publ., 1996, no. 112, pp. 43–53.

  53. Weaver, B.L., Tarney, J., and Windley, B., Geochemistry and Petrogenesis of the Fiskennasset Complex, Southern West Greenland: Nature of the Parent Magma, Geochim. Cosmochim. Acta, 1981, vol. 45, pp. 711–725.

    Article  Google Scholar 

  54. Yoder, H., Generation of Basaltic Magma, Washington: Nat. Acad. Sci., 1976.

    Google Scholar 

  55. Yoder, H.S. and Tilley, C.E., Origin of Basalt Magmas, An Experimental Study of Natural and Synthetic Rock Systems, J. Petrol., 1962, vol. 3, pp. 342–532.

    Google Scholar 

  56. Yudin, B.A. and Fedchenko, V.F., Petrochemical and Metallogenic Characteristics of the Gabbrodiabase Complex of the Yupechkesty-Pogerjyavr Area Lakes, in Materialy po geologii i metallogenii Kol’skogo poluostrova (Materials on Geology and Metallogeny of the Kola Peninsula), Apatity, 1972, vol. 3, pp. 149–155.

    Google Scholar 

  57. Yudin, B.A., Gabbro-labradoritovaya formatsiya Kol’skogo poluostrova i ee metallogeniya (Gabbrolabradorite Formation of the Kola Peninsula and its Metallogeny), Leningrad: Nauka, 1980.

    Google Scholar 

  58. Zozulya, D.R. and Eby, G.N., Geochemical Constraints on the Genetic Relationship between A-Type Peralkaline Granite and Anorthosite from the Neoarchean Keivy Alkaline Province, NE Baltic Shield, in Geochemistry of Magmatic Rocks. School “Geochemistry of Alkaline Rocks”, Moscow: ONTI Geokhi RAS, 2009, pp. 180–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Kudryashov.

Additional information

Original Russian Text © N.M. Kudryashov, A.V. Mokrushin, 2011, published in Petrologiya, 2011, Vol. 19, No. 2, pp. 173–189.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryashov, N.M., Mokrushin, A.V. Mesoarchean gabbroanorthosite magmatism of the Kola region: Petrochemical, geochronological, and isotope-geochemical data. Petrology 19, 167–182 (2011). https://doi.org/10.1134/S086959111102007X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959111102007X

Keywords

Navigation