Skip to main content
Log in

Oxygen regime of granulite metamorphism: Modeling by the method of Gibbs free energy minimization

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Using a new version of the Selektor-C program package for the minimization of Gibbs free energy, physicochemical modeling was conducted for real mineral assemblages from the rocks of the Okhotsk and Chogar complexes and the Larba block, which crystallized under granulite-facies conditions. Considering a two-reservoir fluid-rock system, model assemblages of metapelites and metabasites adequate to natural assemblages were reconstructed by the method of Gibbs potential minimization. The P-T parameters of crystallization, oxygen potential, and the composition of the deep fluid that produced the assemblages were estimated. It was shown that the character of oxygen behavior can be dual under granulite-facies metamorphic conditions: inert behavior in rocks enriched in magnetite and (or) hemoilmenite and perfectly mobile behavior (after D.S. Korzhinskii) in rocks devoid of these minerals. It was shown that the oxygen regime is controlled by the degree of complete or partial leveling of oxygen potential between the deep reduced fluid and the rock in agreement with their oxygen capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avchenko, O.V., Petrologiya okhotskogo metamorficheskogo kompleksa (Petrology of the Okhotsk Metamorphic Complex), Moscow: Nauka, 1977.

    Google Scholar 

  2. Avchenko, O.V., Petrogeneticheskaya informativnost’ granatov metamorficheskikh porod (Petrogenetic Informativity of Garnets from Metamorphic Rocks), Moscow: Nauka, 1982.

    Google Scholar 

  3. Avchenko, O.V., Mineral’nye ravnovesiya v metamorficheskikh porodakh i problemy geobarotermometrii (Mineral Equilibria in the Metamorphic Rocks and Problems of Geobarometry), Moscow: Nauka, 1990.

    Google Scholar 

  4. Avchenko, O.V., Aleksandrov, I.A., Khudolozhkin, V.O., and Mishkin, M.A., Fluid Regime of the Amphibolite-Facies Metamorphism in the Dzhugdzhur-Stanovoy Fold Area (Far East), Tikhookean. Geol., 2009, vol. 28, no. 4, pp. 3–15 [Russ. J. Pac. Geol. (Engl. Transl.), vol. 3, no. 4, pp. 307–318]

    Google Scholar 

  5. Avchenko, O.V. and Chudnenko, K.V., Physicochemical Modeling of Mineral Assemblages in Metamorphic Rocks, Dokl. Akad. Nauk, 2005, vol. 401, no. 3, pp. 378–383 [Dokl. Earth Sci. (Engl. Transl.), vol. 401, no. 3, pp. 398–402].

    Google Scholar 

  6. Avchenko, O.V., Chudnenko, K.V., and Aleksandrov, I.A., Osnovy fiziko-khimicheskogo modelirovaniya mineral’nykh sistem (Principles of Physicochemical Modeling of Mineral Systems), Moscow: Nauka, 2010.

    Google Scholar 

  7. Avchenko, O.V., Khudolozhkin, V.O., Konovalova, N.P., and Barinov, N.N., Carbon-Rich Reduced Fluids of the Sutam Metamorphic Complex, Geochem. Int., 1998, vol. 36, pp. 742–751.

    Google Scholar 

  8. Chudnenko, K.V., Theory and Software of Minimization of Thermodynamic Potentials in Solving Geochemical Problems, Extended Abstract of Doctoral (Geolmin.) Dissertation, Irkutsk: Institut Geokhimii im. A.P. Vinogradova, 2007.

    Google Scholar 

  9. Dachs, E., PET: Petrological Elementary Tools for Mathematics, Comput. Geosci., 1998, vol. 24/3, pp. 219–235.

    Google Scholar 

  10. Fonarev, V.I., Mineral’nye ravnovesiya zhelezistykh formatsii dokembriya (Mineral Equilibria in the Precambrian Iron Formations), Moscow: Nauka, 1987.

    Google Scholar 

  11. Frost, B.R., Contact Metamorphic Effects of the Stillwater Complex, Montana the Concordant Iron Formation: a Discussion of the Role of Buffering Metamorphism of Iron-Formation, Am. Mineral., 1982, vol. 67, pp. 142–148.

    Google Scholar 

  12. Holland, T.J.B. and Powell, R., An Enlarged and Updated Internally Consistent Thermodynamic Data Set with Uncertainties and Correlations: the System K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2, J. Metamorph. Geol., 1990, vol. 8, pp. 89–124.

    Article  Google Scholar 

  13. Karpov, I.K., Fiziko-khimicheskoe modelirovanie na EVM v geokhimii (Physicochemical Computer Simulation in Geochemistry), Novosibirsk: Nauka, 1981.

    Google Scholar 

  14. Khudolozhkin, V.O., On the Quantitative Evaluation of Metamorphic Fluid Composition: Verification of the Results of Physicochemical Simulations for Water-Mineral-Rock Reactions, Tikhookean. Geol., 2007, vol. 26, no. 3, pp. 106–117 [Russ. J. Pac. Geol. (Engl. Transl.), vol. 1, no. 4, pp. 290–301]

    Google Scholar 

  15. Korzhinskii, D.S., Kislotno-osnovnoe vzaimodeistvie v mineraloobrazuyushchikh sistemakh. Izbrannye trudy (Basic-Acid Interaction of the Mineral-Forming Systems. Selected Works), Moscow: Nauka, 1994.

    Google Scholar 

  16. Korzhinskii, D.S., Zakonomernosti assotsiatsii mineralov v porodakh arkheya Vostochnoi Sibiri (Regularities of Mineral Assemblages in the Archean Rocks of East Siberia), Moscow: Akad. Nauk SSSR, 1945.

    Google Scholar 

  17. Korzhinskii, D.S., Dependence of Mineral Formation on Depth, Zap. Vses. Mineral. O-va, 1937, vol. 66, no. 2, pp. 369–384.

    Google Scholar 

  18. Labotka, T.C., Vaniman, D.T., and Papike, J.J., Contact Metamorphic Effects of the Stillwater Complex, Montana, the Concordant Iron Formation: a Reply To the Role of Buffering in Metamorphism of Iron-Formation, Am. Mineral., 1982, vol. 67, pp. 149–152.

    Google Scholar 

  19. Perchuk, L.L., Termodinamicheskii rezhim glubinnogo petrogeneza (Thermodynamic Regime Of Deep-Seated Petrogenesis), Moscow: Nauka, 1973.

    Google Scholar 

  20. Perchuk, L.L., Thermodynamic Control of Metamorphic Processes, in Energetics of Geological Processes, New York-Heidelberg-Berlin: Springer, 1977, pp. 285–352.

    Google Scholar 

  21. Perchuk, L.L., Evolution of Metamorphism, in Eksperiment v reshenii aktual’nykh zadach geologii (Experiment in Solution of Actual Geological Problems), Moscow: Nauka, 1986.

    Google Scholar 

  22. Perchuk, L.L., Gas-Mineral Equilibria and Possible Geochemical Model of the Earth,S Interior, Phys. Earth Planet. Inter., 1976, vol. 13, no. 3, pp. 232–239.

    Article  Google Scholar 

  23. Perchuk, L.L. and Ryabchikov, I.L., Fazovoe sootvetstvie v mineral’nykh sistemakh (Phase Correspondence in Mineral Systems), Moscow: Nauka, 1976.

    Google Scholar 

  24. Reed, R.C., Prausnitz, J., and Sherwood, T., The Properties of Gases and Liquids, New York: McGraw Hill, 1977. Translated under the title Svoistva gazov i zhidkostei. Spravochnoe posobie, Leningrad: Khimiya, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Khudolozhkin.

Additional information

Original Russian Text © V.O. Khudolozhkin, O.I. Sharova, 2011, published in Petrologiya, 2011, Vol. 19, No. 1, pp. 104–110.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khudolozhkin, V.O., Sharova, O.I. Oxygen regime of granulite metamorphism: Modeling by the method of Gibbs free energy minimization. Petrology 19, 102–108 (2011). https://doi.org/10.1134/S0869591110061013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591110061013

Keywords

Navigation