Skip to main content
Log in

Variolitic lavas in the axial rift of the Mid-Atlantic Ridge and their origin (Sierra Leone area, 6°18′N)

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Altered variolites described for the first time in the axial zone of the Mid-Atlantic Ridge are represented by rounded globules of andesite (icelandite) composition with light trachyandesite rim embedded in a picrobasaltic matrix. The globules were transferred with picrobasaltic melt and then floated to the surface of lava flow, while formation of leucocratic rims was presumably related to thermodiffusion (Soret effect) in a cooling heterogeneous melt. This heterogeneous melt was formed by penetration of ascending column of picrobasaltic magma in already existing small intracructsal magmatic chamber filled with residual icelanditetype andesite melt and involvement of the latter into a general upward movement. The rapid ascent of the melts in the oceanic spreading zones by means of turbulent flowing caused dispersion of the extragenous melt into small drops in a jet of picrobasaltic magma, without their interaction. Variolites were formed during cooling of such heterogeneous lava flow. No signs of liquid immiscibility were found in the studied variolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Ariskin and G. S. Barmina, Simulation of Phase Equilibria during Crystallization of Basaltic Magmas (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  2. G. M. Biggar, “Immiscibility in Tholeiites,” Mineral. Mag. 43(328), 543–544 (1979).

    Article  Google Scholar 

  3. A. A. Borisov, “Experimental Investigation of K and Na Partitioning between Miscible Liquids,” Petrologiya 16(6), 593–605 (2008) [Petrology 16, 552–564 (2008)].

    Google Scholar 

  4. I. S. E. Carmichael, “The Petrology of Thingamuli, a Tertiary Volcano in Eastern Iceland,” J. Petrol. 5 (3), 435–460 (1964).

    Google Scholar 

  5. L. V. Danyshevsky, “The Effect of Small Amounts of H2O on Crystallization of Mid-Ocean Ridge and Back-Arc Basin Magmas,” J. Volcanol. Geotherm. Res. 110, 265–280 (2001).

    Article  Google Scholar 

  6. A. D. Fowler, B. Berger, M. Shore, et al., “Supercooled Rocks: Development and Significance of Varioles, Spherolites, Dendrites and Spinifex in Archaean Volcanic Rocks, Abitibi Greenstone Belt, Canada,” Precambrian Res. 115, 311–328 (2002).

    Article  Google Scholar 

  7. I. C. Freestone, “Immiscibility in Tholeiites,” Mineral. Mag. 43(328), 544–546 (1979).

    Article  Google Scholar 

  8. E. J. Hanski, “Globular Ferropicritic Rocks at Pechenga, Kola Peninsula (Russia): Liquid Immiscibility Versus Alternation,” Lithos 29, 197–216 (1993).

    Article  Google Scholar 

  9. F. Yu. Levinson-Lessing, Selected Works (Akad. Nauk SSSR, Moscow, 1949), Vol. 1 [in Russian].

    Google Scholar 

  10. A. R. Mc Birney, “Differentiation of the Skaergaard Intrusion,” Nature 253, 435–460 (1975).

    Article  Google Scholar 

  11. A. R. Philpotts, “Comments on: Liquid Immiscibility and the Evolution of Basaltic Magma,” J. Petrol. 49(12), 2171–2175 (2008).

    Article  Google Scholar 

  12. A. R. Philpotts, “Composition of Immiscible Liquids in Volcanic Rocks,” Contrib. Mineral. Petrol. 80, 201–218 (1982).

    Article  Google Scholar 

  13. A. R. Philpotts, “Principles of igneous and metamorphic petrology,” (Cambridge, University Press, Prentice-Hall, 1990).

    Google Scholar 

  14. Yu. M. Pushcharovskii, S. G. Skolotnev, A. A. Peive, et al., Geology and Metallogeny of the Mid-Atlantic Ridge: 5–7°N (GEOS, Moscow, 2004) [in Russian].

    Google Scholar 

  15. E. Redder, “Silicate Liquid Immiscibility,” in The Evolution of Igneous Rocks: Fiftieth Anniversary Perspectives Ed. by H. S. Yoder (Princeton Univ. Press, Princeton, (Mir, Moscow, 1983), pp. 15–57 [in Russian].

    Google Scholar 

  16. E. Roedder, “Low Temperature Liquid Immiscibility in the System K2O-FeO-Al2O3-SiO2,” Am. Mineral. 36, 282–286 (1951).

    Google Scholar 

  17. E. Roedder and P. W. Weiblen, “Lunar Petrology of Silicate Melt Inclusion, Apollo 11 Rocks,” Geochim. Cosmochim. Acta. Suppl. 1. Proc. Apollo 11 Lunar Sci. Conf., 801–837 (1970).

  18. E. Roedder and P. W. Weiblen, “Petrology of Silicate Melt Inclusion, Apollo 11 and Apollo 12, and Terrestrial Equivalents,” Geochim. Cosmochim. Acta. Suppl. 2, Proc. Second Lunar Sci. Conf. 507–528 (1971).

  19. J.-G. Schilling, B. B. Hanan, B. McCully, and R. H. Kingsley, “Influence of the Sierra Leone Mantle Plume on the Equatorial MAR: a Nd-Sr-Pb Isotopic Study,” J. Geophys. Res. 99, 12005–12028 (1994).

    Article  Google Scholar 

  20. U. Schreiber, D. Anders, and J. Koppen, “Mixing and Chemical Interdiffusion of Trachytic and Latitic Magma in a Subvolcanic Complex of the Tertiary Westerwald (Germany),” Lithos 46, 695–714 (1999).

    Article  Google Scholar 

  21. E. V. Sharkov, K. N. Shatagin, I. S. Krasivskaya, et al., “Pillow Lavas of the Sierra Leone Test Site, Mid-Atlantic Ridge, 5–7°N: Sr-Nd Isotope Systematics, Geochemistry, and Petrology,” Petrologiya, No. 4, 356–375 (2008) [Petrology 16, 335–352 (2008)].

  22. E. V. Sharkov, N. S. Bortnikov, O. A. Bogatikov, et al., “Third Layer of the Oceanic Crust in the Axial Part of the Mid-Atlantic Ridge (Sierra Leone MAR Segment, 6°N),” Petrologiya 13(6), 592–625 (2005) [Petrology 13, 540–570 (2005)].

    Google Scholar 

  23. V. A. Simonov, E. V. Sharkov, and S. V. Kovyazin, “Petrogenesis of the Fe-Ti Intrusive Complexes in the Sierra Leone Region, Central Atlantic,” Petrologiya 17(5), 521–538 (2009) [Petrology 17, 488–502 (2009)].

    Google Scholar 

  24. V. F. Smol’kin, Komatiitic and Picritic Magmatism of the Early Precambrian of the Baltic Shield (Nauka, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  25. R. S. J. Sparks and L. Marshall, “Thermal and Mechanical Constraints on Mixing between Mafic and Silicic Magmas,” J. Volcanol. Geotherm. Res. 29, 99–124 (1986).

    Article  Google Scholar 

  26. S. A. Svetov, Magmatic Systems of the Ocean-Continent Transition Zone in the Archean of the Eastern Fennoscandian Schield (Kar. Nauchn. Ts. RAN, Petrozavodsk, 2005) [in Russian].

    Google Scholar 

  27. S. A. Svetov, “Liquid Immiscible Differentiation in the Basaltic Systems by the Example of the Suisarian Variolites of the Yalguba Range,” in Geology and Mineral resources of Karelia, Ed. by A. I. Golubev (Kar. Nauchn. Ts. RAN, Petrozavodsk, 2008) [in Russian].

    Google Scholar 

  28. I. V. Veksler, A. M. Dorfman, A. A. Borisov, et al. “Liquid Immiscibility and the Evolution of Basaltic Magma,” J. Petrol. 48(11), 2187–2210 (2007).

    Article  Google Scholar 

  29. D. Walker and S. E. DeLong, “Soret Separation of Mid-Ocean Ridge Basalt Magma,” Contrib. Mineral. Petrol. 79, 231–240 (1982).

    Article  Google Scholar 

  30. E. B. Watson, “Basalt Contamination by Continental Crust: Some Experiments and Model,” Contrib. Mineral. Petrol. 80, 73–87 (1982).

    Article  Google Scholar 

  31. A. N. Zavaritskii and V. S. Sobolev, Physicochemical Principles of Petrography of Igneous Rocks (Gosgeoltekhizdat, Moscow, 1961) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Sharkov.

Additional information

Original Russian Text © I.S. Krassivskaya, E.V. Sharkov, N.S. Bortnikov, A.V. Chistyakov, N.V. Trubkin, T.I. Golovanova, 2010, published in Petrologiya, 2010, Vol. 18, No. 3, pp. 282–296.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krassivskaya, I.S., Sharkov, E.V., Bortnikov, N.S. et al. Variolitic lavas in the axial rift of the Mid-Atlantic Ridge and their origin (Sierra Leone area, 6°18′N). Petrology 18, 263–277 (2010). https://doi.org/10.1134/S0869591110030045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591110030045

Keywords

Navigation