Skip to main content
Log in

Redox potential of mantle magmatic systems

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

A new variant of the olivine-clinopyroxene-spinel oxygen barometer was developed on the basis of the equilibrium 3CaMgSi2O6(Cpx) + 2Fe3O4(Spl) = 3CaMgSiO4(Ol) + 3Fe2SiO4(Ol) + O2. Oxygen fugacity was estimated for the mineral assemblages of meymechites, olivine-bearing rocks of the Guli intrusion, and olivine and clinopyroxene microphenocrysts from interstitial glasses in mantle xenoliths containing metal alloys from Sal Island, Cape Verde Archipelago. It was shown that oxygen fugacity may vary in mantlederived magmatic systems by 7–8 orders of magnitude. Thermodynamic analysis showed that the low water activity in the lower part of the subcratonic lithosphere prevents the formation of hydrocarbons even at the presence of elemental carbon and low oxygen fugacity. The most probable mechanism of diamond formation is the reduction of carbonate components in the composition of near-solidus melts coming into the lithosphere from ascending mantle plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ballhaus, “Redox States of Lithospheric and Asthenospheric Upper Mantle,” Contrib. Mineral. Petrol. 114, 341–348 (1993).

    Article  Google Scholar 

  2. C. Ballhaus, R. F. Berry, and D. H. Green, “Oxygen Fugacity Controls in the Earth’s Upper Mantle,” Nature 348, 437–440 (1990).

    Article  Google Scholar 

  3. B. Beeskow, P. J. Treloar, A. H. Rankin, et al., “A Reassessment of Models for Hydrocarbon Generation in the Khibiny Nepheline Syenite Complex, Kola Peninsula, Russia,” Lithos 91, 1–18 (2006).

    Article  Google Scholar 

  4. A. Bezos and E. Humler, “The Fe3+/Fe Ratios of MORB Glasses and Their Implications for Mantle Melting,” Geochim. Cosmochim. Acta 69, 711–725 (2005).

    Article  Google Scholar 

  5. A. A. Borisov, “Crystallization and Stability of Noble Metal Alloys in the Magmatic Process,” Geol. Rudn. Mestorozhd. 47(6), 516–523 (2005) [Geol. Ore Deposits 47, 469–475 (2005)].

    Google Scholar 

  6. A. A. Borisov, “Experimental Study of the Influence of SiO2 on the Solubility of Cobalt and Iron in Silicate Melts,” Petrologiya 15(5), 474–481 (2007) [Petrology 5, 523–529 (2007)].

    Google Scholar 

  7. G. P. Brey, V. K. Bulatov, A. V. Girnis, and Y. Lahaye, “Experimental Melting of Carbonated Peridotite at 6–10 GPa,” J. Petrol. 49, 797–821 (2008).

    Article  Google Scholar 

  8. A. F. Buddington and D. H. Lindsley, “Iron-Titanium Oxide Minerals and Synthetic Equivalents,” J. Petrol. 5, 310–357 (1964).

    Google Scholar 

  9. D. Canil, “Vanadium Partitioning and the Oxidation State of Archean Komatiite Magmas,” Nature 389, 842–845 (1997).

    Article  Google Scholar 

  10. D. Canil, “Vanadium Partitioning between Orthopyroxene, Spinel and Silicate Melt and the Redox States of Mantle Source Regions for Primary Magmas,” Geochim. Cosmochim. Acta 63, 557–572 (1999).

    Article  Google Scholar 

  11. D. Canil, “Vanadium in Peridotites, Mantle Redox and Tectonic Environments: Archean to Present,” Earth Planet. Sci. Lett. 195, 75–90 (2002).

    Article  Google Scholar 

  12. T. V. Charlu, R. C. Newton, and O. J. Kleppa, “Thermochemistry of Synthetic Ca2Al2SiO7 (Gehlenite)-Ca2MgSi2O7 (Åkermanite) Melilites,” Geochim. Cosmochim. Acta 45, 1401–1657 (1981).

    Article  Google Scholar 

  13. L. Chudinovskikh and R. Boehler, “Eutectic Melting in the System Fe-S to 44 GPa,” Earth Planet. Sci. Lett. 257, 97–103 (2007).

    Article  Google Scholar 

  14. S. Creighton, S. Matveev, H. Höfer, et al., “Oxidation of the Kaapvaal Lithospheric Mantle Driven by Metasomatism,” Contrib. Mineral. Petrol. 157, 491–504 (2009).

    Article  Google Scholar 

  15. L. V. Danyushevsky, S. M. Eggins, T. J. Falloon, and D. M. Christie, “H2O Abundance in Depleted to Moderately Enriched Mid-Ocean Ridge Magmas: Part I: Incompatible Behaviour, Implications for Mantle Storage, and Origin of Regional Variations,” J. Petrol. 41, 1329–1364 (2000).

    Article  Google Scholar 

  16. J. E. Dixon and D. A. Clague, “Volatiles in Basaltic Glasses from Loihi Seamount, Hawaii: Evidence for a Relatively Dry Plume Component,” J. Petrol. 42, 627–654 (2001).

    Article  Google Scholar 

  17. J. E. Dixon, L. Leist, C. Langmuir, and J. G. Schilling, “Recycled Dehydrated Lithosphere Observed in Plume-Influenced Mid-Ocean-Ridge Basalt,” Nature 420, 385–389 (2002).

    Article  Google Scholar 

  18. T. J. Falloon, L. V. Danyushevsky, A. Ariskin, et al., “The Application of Olivine Geothermometry to Infer Crystallization Temperatures of Parental Liquids: Implications for the Temperature of MORB Magmas,” Chem. Geol. 241, 207–233 (2007).

    Article  Google Scholar 

  19. Y. W. Fei, C. M. Bertka, and L. W. Finger, “High-Pressure Iron Sulfur Compound, Fe3S2, and Melting Relations in the Fe—FeS System,” Science 275, 1621–1623 (1997).

    Article  Google Scholar 

  20. C. E. Ford, D. G. Russell, J. A. Craven, and M. R. Fisk, “Olivine-Liquid Equilibria: Temperature, Pressure and Composition Dependence of the Crystal/Liquid Cation Partition Coefficients for Mg, Fe2+, Ca and Mn,” J. Petrol. 24, 256–265 (1983).

    Google Scholar 

  21. B. R. Frost and D. H. Lindsley, “Occurence of Irontitanium Oxides in Igneous Rock,” in Oxide Minerals: Petrologic and Magnetic Significance, Rev. Mineral, 25, 433–467 (1991).

    Google Scholar 

  22. B. R. Frost, D. H. Lindsley, and D. J. Andersen, “Fe-Ti Oxide-Silicate Equilibria: Assemblages with Fayalitic Olivine,” Am. Mineral. 73, 727–740 (1988).

    Google Scholar 

  23. D. J. Frost and C. A. McCammon, “The Redox State of Earth’s Mantle,” Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

    Article  Google Scholar 

  24. D. J. Frost, C. Liebske, F. Langenhorst, et al., “Experimental Evidence for the Existence of Iron-Rich Metal in the Earth’s Lower Mantle,” Nature 428, 409–412 (2004).

    Article  Google Scholar 

  25. L. L. Gee and R. O. Sack, “Experimental Petrology of Melilite Nephelinites,” J. Petrol. 29, 1233–1255 (1988).

    Google Scholar 

  26. M. S. Ghiorso and R. O. Sack, “Fe-Ti Oxide Geothermometry: Thermodynamic Formulation and the Estimation of Intensive Parameters in Silicic Magmas,” Contrib. Mineral. Petrol. 108, 485–510 (1991).

    Article  Google Scholar 

  27. D. H. Green, T. J. Falloon, and W. R. Taylor, “Mantle-Derived Magmas—Roles of Variable Source Peridotite and Variable C-O-H Fluid Compositions,” in Magmatic Processes: Physicochemical Principles, Ed. By B. O. Mysen, Geochem. Soc. Spec. Publ. 1, 139–154 (1987).

  28. G. Gudmundsson and B. J. Wood, “Experimental Tests of Garnet Peridotite Oxygen Barometry,” Contrib. Mineral. Petrol. 119, 56–67 (1995).

    Article  Google Scholar 

  29. E. K. Hauri, G. A. Gaetani, and T. H. Green, “Partitioning of Water during Melting of the Earth’s Upper Mantle at H2O-Undersaturated Conditions,” Earth Planet. Sci. Lett. 248, 715–734 (2006).

    Article  Google Scholar 

  30. T. J. B. Holland, “Activities of Components in Omphacitic Solid Solutions. Application of Landau Theory to Mixtures,” Contrib Mineral Petrol 105, 446–453 (1990).

    Article  Google Scholar 

  31. T. J. B. Holland and R. Powell, “An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest,” J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  32. S. V. Ikorskii and N. A. Shugurova, “New Data on Composition of Gases in Minerals from the Alkaline Rocks of the Khibiny Massif,” Geokhimiya, No. 6, 943–947 (1974).

  33. T. Kawasaki, “Thermodynamic Formulations of (Ca,Fe,Mg)2SiO4 Olivine,” Mineral. J. 20, 135–149 (1998).

    Article  Google Scholar 

  34. O. Klein-BenDavid, E. S. Izraeli, E. Hauri, and O. Navon, “Fluid Inclusions in Diamonds from the Diavik Mine, Canada and the Evolution of Diamond- Forming Fluids,” Geochim. Cosmochim. Acta 71, 723–744 (2007).

    Article  Google Scholar 

  35. L. N. Kogarko, Genetic Problems of Agpaitic Magmas (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  36. L. N. Kogarko and D. H. Green, “Phase Equilibria during the Melting of Melilite Nephelinite under Pressures of up to 60 kbar,” Dokl. Akad. Nauk 359(4), 522–524 (1998) [Dokl. Earth Sci. 359, 404–405 (1998)].

    Google Scholar 

  37. L. N. Kogarko, C. Kostolanyi, and I. D. Ryabchikov, “Geochemistry of Reduced Fluid of Alkaline Magmas,” Geokhimiya, No. 12, 1688–1695 (1986).

  38. T. P. Köhler and G. P. Brey, “Calcium Exchange between Olivine and Clinopyroxene Calibrated as Geothermobarometer for Natural Peridotites from 2 to 60 kb with Applications,” Geochim. Cosmochim. Acta 54, 2375–2388 (1990).

    Article  Google Scholar 

  39. D. L. Kohlstedt, H. Keppler, and D. C. Rubie, “Solubility of Water in the Alpha, Beta and Gamma Phases of (Mg,Fe)2SiO4,” Contrib. Mineral. Petrol. 123, 345–357 (1996).

    Article  Google Scholar 

  40. W. M. Lamb and R. K. Popp, “Amphibole Equilibria in Mantle Rocks: Determining Values of Mantle a(H2O) and Implications for Mantle H2O Contents,” Am. Mineral. 94, 41–52 (2009).

    Article  Google Scholar 

  41. S. J. Mackwell and D. L. Kohlstedt, “Diffusion of Hydrogen in Olivine: Implications for Water in the Mantle,” J. Geophys. Res. 95(B4), 5079–5088 (1990).

    Article  Google Scholar 

  42. G. Markl, M. Marks, G. Schwinn, and H. Sommer, “Phase Equilibrium Constraints on Intensive Crystallization Parameters of the Ilimaussaq Complex, South Greenland,” J. Petrol. 42, 2231–2257 (2001).

    Article  Google Scholar 

  43. G. S. Mattioli and B. J. Wood, “Magnetite Activities across the MgAl2O4-Fe3O4 Join, with Application to Thermobarometric Estimates of Upper Mantle Oxygen Fugacity,” Contrib. Mineral. Petrol. 98, 148–162 (1988).

    Article  Google Scholar 

  44. S. Matveev, H. S. C. O’Neill, C. Ballhaus, et al., “Effect of Silica Activity on OH IR Spectra of Olivine: Implications for Low aSiO2 Mantle Metasomatism,” J. Petrol. 42, 721–729 (2001).

    Article  Google Scholar 

  45. P. J. Michael, “Regionally Distinctive Sources of Depleted MORB: Evidence from Trace Elements and H2O,” Earth Planet. Sci. Lett. 131, 301–320 (1995).

    Article  Google Scholar 

  46. J. E. Mungall, J. J. Hanley, N. T. Arndt, and A. Debecdelievre, “Evidence from Meimechites and Other Low-Degree Mantle Melts for Redox Controls on Mantle-Crust Fractionation of Platinum-Group Elements,” Proc. Nat. Acad. Sci. U.S.A. 103, 12695–12700 (2006).

    Article  Google Scholar 

  47. O. Navon, “Diamond Formation in the Earth’s Mantle,” in Proceedings of the VIIth International Kimberlite Conference (Red Roof Design, Cape Town, 1999), Vol. 2, pp. 584–604.

  48. V. A. Nivin, “Gas Concentrations in Minerals with Reference to the Problem of the Genesis of Hydrocarbon Gases in Rocks of the Khibiny and Lovozero Complexes,” Geokhimiya, No. 12, 976–992 (2002) [Geochem. Int. 40, 883–898 (2002)]

  49. V. A. Nivin, P. J. Treloar, N. G. Konopleva, and S. V. Ikorsky, “A Review of the Occurrence, Form and Origin of C-Bearing Species in the Khibiny Alkaline Igneous Complex, Kola Peninsula, NW Russia,” Lithos 85, 93–112 (2005).

    Article  Google Scholar 

  50. H. S. C. O’Neill, “Free Energies of Formation of NiO, CoO, Ni2SiO4, and Co2SiO4,” Am. Mineral. 72, 280–291 (1987).

    Google Scholar 

  51. H. S. C. O’Neill and S. M. Eggins, “The Effect of Melt Composition on Trace Element Partitioning: An Experimental Investigation of the Activity Coefficients of FeO, NiO, CoO, MoO2 and MoO3 in Silicate Melts,” Chem. Geol. 186, 151–181 (2002).

    Article  Google Scholar 

  52. H. S. C. O’Neill and V. J. Wall, “The Olivine-Spinel Oxygen Geobarometer, the Nickel Precipitation Curve and the Oxygen Fugacity of the Upper Mantle,” J. Petrol. 28, 1169–1192 (1987).

    Google Scholar 

  53. E. F. Osborn, “Role of Oxygen Pressure in the Crystallization and Differentiation of Basaltic Magma,” Am. J. Sci. 257, 609–647 (1959).

    Google Scholar 

  54. V. Pan and J. Longhi, “Low Pressure Liquidus Relations in the System Mg2SiO4-Ca2SiO4-NaAlSiO4-SiO2,” Am. J. Sci. 289, 1–16 (1989).

    Google Scholar 

  55. V. Pan and J. Longhi, “The System Mg2SiO4-Ca2SiO4-CaAl2O4-NaAlSiO4-SiO2: One Atmosphere Liquidus Equilibria of Analogs of Alkaline Mafic Lavas,” Contrib. Mineral. Petrol. 105, 569–584 (1990).

    Article  Google Scholar 

  56. A. H. Peslier, A. B. Woodland, and J. A. Wolff, “Fast Kimberlite Ascent Rates Estimated from Hydrogen Diffusion Profiles in Xenolithic Mantle Olivines from Southern Africa,” Geochim. Cosmochim. Acta 72, 2711–2722 (2008).

    Article  Google Scholar 

  57. I. A. Petersilie, “Hydrocarbon Gases and Bitumens of Intrusive Massifs in the Central Part of the Kola Peninsula,” Dokl. Akad. Nauk SSSR 122(6), 1086–1089 (1958).

    Google Scholar 

  58. I. A. Petersilie and H. Sørensen, “Hydrocarbon Gases and Bituminous Substances in Rocks from the Ilimaussaq Alkaline Intrusion, South Greenland,” Lithos 3, 59–76 (1970).

    Article  Google Scholar 

  59. D. Phillips, J. W. Harris, and K. S. Viljoen, “Mineral Chemistry and Thermobarometry of Inclusions from De Beers Pool Diamonds, Kimberley, South Africa,” Lithos 77, 155–179 (2004).

    Article  Google Scholar 

  60. M. Portnyagin, R. Almeev, S. Matveev, and F. Holtz, “Experimental Evidence for Rapid Water Exchange between Melt Inclusions in Olivine and Host Magma,” Earth Planet. Sci. Lett. 272, 541–552 (2008).

    Article  Google Scholar 

  61. J. Potter, A. H. Rankin, and P. J. Treloar, “Abiogenic Fischer-Tropsch Synthesis of Hydrocarbons in Alkaline Igneous Rocks: Fluid Inclusion, Textural and Isotopic Evidence from the Lovozero Complex, N.W. Russia,” Lithos 75, 311–330 (2004).

    Article  Google Scholar 

  62. D. C. Presnall, “The Join Forsterite-Diopside-Iron Oxide and Its Bearing on the Crystallization of Basaltic and Ultramafic Magmas,” Am. J. Sci. 264, 753–809 (1966).

    Google Scholar 

  63. I. D. Ryabchikov, “Upper Mantle Redox Equilibria,” Dokl. Akad. Nauk SSSR 268(3) (1983).

  64. I. D. Ryabchikov and L. N. Kogarko, “Redox Equilibria in Alkaline Lavas from Trindade Island, Brasil,” Int. Geol. Rev. 36, 173–183 (1994).

    Article  Google Scholar 

  65. I. D. Ryabchikov and L. N. Kogarko, “Magnetite Compositions and Oxygen Fugacities of the Khibina Magmatic System,” Lithos 91, 35–45 (2006).

    Article  Google Scholar 

  66. I. D. Ryabchikov, A. V. Ukhanov, and T. Ishii, “Redox Equilibria in the Alkaline Rocks from the Upper Mantle of the Yakutsk Kimberlite Province,” Geokhimiya, No. 5, 1110–1123 (1985).

  67. I. D. Ryabchikov, L. N. Kogarko, T. Ntaflos, and G. Kurat, “Metallic Phases in Mantle Xenoliths,” Dokl. Akad. Nauk 338, 95–98 (1994).

    Google Scholar 

  68. I. D. Ryabchikov, T. Ntaflos, G. Kurat, and L. N. Kogarko, “Glass-Bearing Xenoliths from Cape Verde: Evidence for a Hot Rising Mantle Jet,” Mineral. Petrol. 55, 217–237 (1995).

    Article  Google Scholar 

  69. I. D. Ryabchikov, I. P. Solovova, T. Ntaflos, and A. Büchl, “Subalkaline Picritic Basalts of the Putorana Plateau, Eastern Siberia: Conditions of Magma Formation and Potential Temperature of the Mantle Plume,” Dokl. Akad. Nauk 369(1), 107–110 (1999) [Dokl. Earth Sci. 369, 1182–1185 (1999)].

    Google Scholar 

  70. I. D. Ryabchikov, T. Ntaflos, I. P. Solovova, and A. Büchl, “Subalkaline picrobasalts and plateau basalts from Putorana plateau (Siberian CFB province). I. Mineral compositions and geochemistry of major and trace elements,” Geochem. Int. 39, 467–483 (2001).

    Google Scholar 

  71. I. D. Ryabchikov, I. P. Solovova, L. N. Kogarko, et al., “Thermodynamic Parameters of Generation of Meymechites and Alkaline Picrites in the Maymecha-Kotui Province: Evidence from Melt Inclusions,” Geokhimiya, No. 11, 1139–1150 (2002) [Geochem. Int. 40, 1031–1041 (2002)].

  72. I. D. Ryabchikov, L. N. Kogarko, and I. P. Solovova, “Physicochemical Conditions of Magma Formation at the Base of the Siberian Plume: Insight from the Investigation of Melt Inclusions in the Meymechites and Alkali Picrites of the Maimecha-Kotui Province,” Petrologiya 17(3), 311–323 (2009) [Petrology 17, 287–299 (2009)].

    Google Scholar 

  73. A. E. Saal, E. H. Hauri, C. H. Langmuir, and M. R. Perfit, “Vapour Undersaturation in Primitive Mid-Ocean-Ridge Basalt and the Volatile Content of Earth’s Upper Mantle,” Nature 419, 451–455 (2002).

    Article  Google Scholar 

  74. R. O. Sack and M. S. Ghiorso, “An Internally Consistent Model for the Thermodynamic Properties of Fe-Mg-Titanomagnetite-Aluminate Spinels,” Contrib. Mineral. Petrol. 106, 474–505 (1991).

    Article  Google Scholar 

  75. S. Salvi and A. Williams-Jones, “Alteration, HFSE Mineralisation, and Hydrocarbon Formation in Peralkaline Igneous Systems: Insights from the Strange Lake Pluton, Canada,” Lithos 91, 19 (2006).

    Article  Google Scholar 

  76. M. Schrauder and O. Navon, “Hydrous and Carbonatitic Fluids in Fibrous Diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 58, 761–771 (1994).

    Article  Google Scholar 

  77. M. Schrauder, O. Navon, D. Szafranek, et al., “Fluids in Yakutian and Indian Diamonds,” Mineralogical Magazin 58A, 813–814 (1994).

    Article  Google Scholar 

  78. A. I. Shapkin and Y. I. Sidorov, “Thermodynamic Models in Cosmochemistry and Planetology,” Geochem. Int. 41(Suppl. 1), 1–144 (2003).

    Google Scholar 

  79. V. S. Shatsky, D. A. Zedgenizov, A. L. Ragozin, et al., “Evidence for Metasomatic Formation of Diamond in Eclogite Xenolith from the Udachnaya Kimberlite Pipe (Yakutia),” Dokl. Earth Sci. 402, 587–590 (2005).

    Google Scholar 

  80. P. Shi, “Low-Pressure Phase-Relationships in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2 at 1100°C, with Implications for the Differentiation of Basaltic Magmas,” J. Petrol. 34, 743–762 (1993).

    Google Scholar 

  81. A. V. Sobolev and A. B. Slutskii, “The Composition and Crystallization Conditions of the Parental Melt of the Siberian Meymechites in Relation with Common Problems of Ultrabasic Magmas,” Geol. Geofiz., No. 12, 97–110 (1984).

  82. A. V. Sobolev, V. S. Kamenetskii, and N. N. Kononkova, “New Data on the Petrology of Siberian Meymechites,” Geokhimiya, No. 8, 1084–1095 (1984).

  83. H. Soulard, A. Provost, and P. Boivin, “CaO-MgO-Al2O3-SiO2-Na2O (CMASN) at 1 bar from Low to High Na2O Contents: Topology of an Analogue for Alkaline Basic Rocks,” Chem. Geol. 96, 459–477 (1992).

    Article  Google Scholar 

  84. D. R. Wones, “Significance of the Assemblage Titanite + Magnetite + Quartz in Granitic Rocks,” Am. Mineral. 74, 744–749 (1989).

    Google Scholar 

  85. B. J. Wood, L. T. Bryndzya, and K. E. Johnson, “Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation,” Science 248, 337–345 (1990).

    Article  Google Scholar 

  86. A. B. Woodland and M. Koch, “Variation in Oxygen Fugacity with Depth in the Upper Mantle beneath the Kaapvaal Craton, Southern Africa,” Earth Planet. Sci. Lett. 214, 295–310 (2003).

    Article  Google Scholar 

  87. R. K. Workman, E. Hauri, S. R. Hart, et al., “Volatile and Trace Elements in Basaltic Glasses from Samoa: Implications for Water Distribution in the Mantle,” Earth Planet. Sci. Lett. 241, 932–951 (2006).

    Article  Google Scholar 

  88. D. Xirouchakis and D. H. Lindsley, “Equilibria among Titanite, Hedenbergite, Fayalite, Quartz, Ilmenite, and Magnetite: Experiments and Internally Consistent Thermodynamic Data for Titanite,” Am. Mineral. 83, 712–725 (1998).

    Google Scholar 

  89. D. Xirouchakis, D. H. Lindsley, and D. J. Andersen, “Assemblages with Titanite (CaTiOSiO4), Ca-Mg-Fe Olivine and Pyroxenes, Fe-Mg-Ti Oxides, and Quartz: Part I. Theory,” Am. Mineral. 86, 247–253 (2001a).

    Google Scholar 

  90. D. Xirouchakis, D. H. Lindsley, and B. R. Frost, “Assemblages with Titanite (CaTiOSiO4), Ca-Mg-Fe Olivine and Pyroxenes, Fe-Mg-Ti Oxides, and Quartz: Part II. Application,” Am. Mineral. 86, 254–264 (2001b).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Ryabchikov.

Additional information

Original Russian Text © I.D. Ryabchikov, L.N. Kogarko, 2010, published in Petrologiya, 2010, Vol. 18, No. 3, pp. 257–269.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryabchikov, I.D., Kogarko, L.N. Redox potential of mantle magmatic systems. Petrology 18, 239–251 (2010). https://doi.org/10.1134/S0869591110030021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591110030021

Keywords

Navigation