Skip to main content
Log in

Isotopic (Sr, Nd, O) systematics of the high Sr-Ba Late Miocene granitoid intrusions from the Caucasian Mineral Waters region

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This paper is dedicated to the interpretation of isotope-geochemical data on high Sr-Ba granitoids exemplified by their typical representatives—Late Miocene laccoliths of the Caucasian Mineral Waters (CMW). These massifs are made up of amphibole granites, granosyenites, syenites, and leucogranites, which show particular behavior of Sr, Nd, and O isotope systems. The syenites and granosyenites are characterized by δ18O variations from 8 to 10‰. As compared to them, the amphibole granites have lowered (up to 7‰), while leucogranites, elevated (up to 12.5–13.7‰) oxygen isotope compositions. The (87Sr/86Sr)8.3 ratio in the granitoids accounts for 0.7083–0.7086, whereas σNd(T) varies from −4.2 to −2.1.

The complex isotope—geochemical study was carried on the CMW granitoids, host rocks, and wall-rock metasomatites, which were formed during emplacement and cooling of the intrusive bodies. The mechanism of contamination of a granitoid melt by evaporite-bearing magnesian carbonate sequences was proposed to explain observed isotope characteristics. The P-T conditions of granite formation (800°C and 1.5 kbar), as well as the fraction (up to 17%) and inferred age of contaminant were estimated. The elevated oxygen isotope composition of the leucogranites was considered to be related to the fluid-magmatic interaction.

Isotopic reconstructions showed that all CMW granitoids could be derived from a common parental melt. The amphibole granites occupying the central part of CMW structure most closely approximate composition of the parental melt. The isotope and geochemical signatures of the syenites and granosyenites located at the periphery of the structure could be explained by interaction of felsic granitic melt with magnesian carbonate rocks at depth 5 ± 2 km. The leucogranites of CMW were derived by fractionation of the melt corresponding in composition to the amphibole granites and show no signs of contamination by carbonate rocks. Extremely high δ18O in these rocks could result from fluid-rock interaction during cooling of the intrusive bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Avdeenko, E. O. Dubinina, and A. A. Nosova, “Disequilibrium of Oxygen Isotope Composition of Phenocryst Minerals in the Porphyritic Granitoids of CMW, North Caucasus,” in Isotope Systems and Timing of geological processes. Proceedings of 4th Russian Conference on Isotope Geochronology, St. Petersburg, Russia, 2009 (IP Katalkin, St. Petersburg, 2009), Vol. 1, pp. 17–20 [in Russian].

    Google Scholar 

  2. A. S. Avdeenko, E. O. Dubinina, A. A. Nosova, et al., “Isotopic (Nd, Sr, and δ18O) Signatures of the Late Miocene High Sr-Ba Granitoids in the Mineral’nye Vody Area, Northern Caucasus: Evidence of the Protolith Nature,” Dokl. Akad. Nauk 422(1), 1–5 (2008) [Dokl. Earth Sci. 422, 1073–1077 (2008)].

    Google Scholar 

  3. M. M. Arakelyants, A. M. Borsuk, and L. L. Shanin, “The Youngest Granitoid Volcanoplutonic Formation of the Greater Caucasus on the Basis of K-Ar Dating,” Dokl. Akad. Nauk SSSR 182(5), 1157–1160 (1968).

    Google Scholar 

  4. L. Ya. Aranovich, Biotite-Garnet Equilibria in Metapelites: I. Thermodynamics of Solid Solutions and End Member Reactions, in Essays of Physicochemical Petrology, Ed. by V. A. Zharikov (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  5. L. Ya. Aranovich, Mineral Equilibria of Multicomponent Solid Solutions (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  6. R. G. Berman, “Thermobarometry Using Multi-Equilibrium Calculations—a New Technique, with Petrological Applications,” Can. Mineral. 29, 833–855 (1991).

    Google Scholar 

  7. R. G. Berman, L. Ya. Aranovich, D. G. Rancourt, and P. H. J. Mercier, “Reversed Phase Equilibrium Constraints on the Stability of Mg-Fe-Al Biotite,” Am. Mineral. 92, 139–150 (2007).

    Article  Google Scholar 

  8. R. G. Berman and L. Y. Aranovich, “Optimized Standard State and Solution Properties of Minerals: I. Model Calibration for Olivine, Orthopyroxene, Cordierite, Garnet, and Ilmenite in the System FeO-MgO-CaO-Al2O3-TiO2-SiO2,” Contrib. Mineral. Petrol. 126, 1–22 (1996).

    Article  Google Scholar 

  9. P. Blattner, V. Dietrich, and A. Gansser, “Contrasting 18O Enrichment and Origins of High Himalayan and Transhimalayan Intrusives,” Earth. Planet. Sci. Lett. 65, 276–286 (1983).

    Article  Google Scholar 

  10. L. G. Bogashova, Role of Halogenic Waters in the Formation of the Mineral Deposits (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  11. Geological Atlas of the Caucasian Mineral Waters, Ed. by N. I. Prutskii (FGUGP Kavkazgeols’emka, Essentuki, 2003) [in Russian].

    Google Scholar 

  12. B. W. Chappell and A. J. R. White, “Two Contrasting Granite Types,” Pacific Geol. 8, 173–174 (1974).

    Google Scholar 

  13. A. R. Chivas, A. S. Andrew, A. K. Sinha, and J. R. O’Neil, “Geochemistry of Pliocene-Pleistocene Oceanic Arc Plutonic Complex,” Guadalcanal. Nature 300, 139–143 (1982).

    Article  Google Scholar 

  14. D. R. Cole and S. Chakraborty, “Rates and Mechanisms of Isotopic Exchange,” in Stable Isotope Geochemistry, Rev. Mineral. Geochem. 43, 83–223 (2001).

  15. R. E. Criss and H. P. Taylor, “Stable Isotope Geochemistry of Metamorphic Rocks,” in Stable Isotopes in High Temperature Geological Processes, Rev. Mineral. Geochem. 16, 373–424 (1986).

  16. C. de Capitani, “Gleichgewichts-Phasendiagramme: Theorie und Software. Berichte der Deutschen Mineralogischen Gesellschaft, Beiheft zum,” Eur. J. Mineral. 6, 48 (1994).

    Google Scholar 

  17. C. de Capitani and T. H. Brown, “The Computation of Chemical Equilibrium in Complex Systems Containing Non-Ideal Solutions,” Geochim. Cosmochim. Acta 51, 2639–2652 (1987).

    Article  Google Scholar 

  18. M. H. Dodson, “Closure Temperature in Cooling Geochronological and Petrological Systems,” Contrib. Mineral. Petrol. 40, 259–274 (1973).

    Article  Google Scholar 

  19. D. J. DePaolo, “Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization,” Earth. Planet. Sci. Lett. 53, 189–202 (1981).

    Article  Google Scholar 

  20. E. O. Dubinina and L. Z. Lakshtanov, “A Kinetic Model of Exchange in Dissolution-Precipitation Processes,” Geochim. Cosmochim. Acta 61, 2265–2273 (1997).

    Article  Google Scholar 

  21. J. M. Eiler, “Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle Rocks,” in Stable Isotope Geochemistry, Rev. Mineral. Geochem. 43, 319–364 (2001).

    Google Scholar 

  22. M. B. Fowler, P. J. Henney, D. P. F. Darbyshire, et al., “Petrogenesis of High Ba-Sr Granites: the Rogart Pluton, Sutherland,” J. Geol. Soc. London 158, 521–534 (2001).

    Article  Google Scholar 

  23. M. B. Fowler and P. J. Henney, “Mixed Caledonian Appinite Magmas: Implications for Lamprophyre Fractionation and High Ba-Sr Granite Genesis,” Contrib. Mineral. Petrol. 126, 199–215 (1996).

    Article  Google Scholar 

  24. B. J. Giletti, M. P. Semet, and R. A. Yund, “Studies in Diffusion III. Oxygen in Feldspars: An Ion Microprobe Determination,” Geochim. Cosmochim. Acta. 42, 45–57 (1978).

    Article  Google Scholar 

  25. U. Haak, J. Hoefs, and E. Gohn, “Constraints on the Origin of Damaran Granites by Rb/Sr and δ18O data,” Contrib. Mineral. Petrol. 79, 279–289 (1982).

    Article  Google Scholar 

  26. J. Hoefs and R. Emmermann, “The Oxygen Isotope Composition of Hercynian Granites and Pre-Hercynian Gneisses from the Schwarzwald, SW Germany,” Contrib. Mineral. Petrol. 83, 320–329 (1983).

    Article  Google Scholar 

  27. B. Jamtveit, H. Svensen, Y. Podladchikov, and S. Planke, “Hydrothermal Vent Complexes Associated with Sill Intrusions in Sedimentary Basins,” in Physical Geology of High-Level Magmatic Systems, Ed. by N. Petford and C. Breitkruz, Geol. Soc. London Spec. Publ. 234, 233–241 (2004).

  28. Y. H. Jiang, S. Y. Jiang, H. F. Ling, et al., “Petrology and Geochemistry of Shoshonitic Plutons from the Western Kunlun Orogenic Belt, Xinjiang, Northwestern China: Implication for Granitoid Geneses,” Lithos 63, 165–187 (2002).

    Article  Google Scholar 

  29. N. V. Koronovskii and L. I. Demina, “Collision Stage of the Evolution of the Caucasian Sector of the Alpine Foldbelt: Geodynamics and Magmatism,” Geotektonika, No. 2, 17–35 (1999) [Geotectonics 33, 102–118 (1999)].

  30. N. V. Koronovskii, V. G. Molyavko, and I. A. Ostafiichuk, “Petrochemical Peculiarities and Conditions of Formation of the Neogene Intrusions of the Caucasian Mineral Waters Region,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 6, 39–51 (1986).

  31. V. A. Lebedev, I. V. Chernyshev, A. S. Avdeenko, et al., “Heterogeneity of Ar and Sr Initial Isotopic Composition in the Coexisting Minerals from Miocene Hypabyssal Granitoids in the Caucasian Mineral Waters Region,” Dokl. Akad. Nauk 410(1), 95–100 (2006) [Dokl. Earth Sci. 410, 1070–1074 (2006)].

    Google Scholar 

  32. J. M. MacCrea, “On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale,” J. Chem. Phys. 18, 849–857 (1950).

    Article  Google Scholar 

  33. A. A. Nosova, L. V. Sazonova, A. Ya. Dokuchaev, et al., “Neogene Late-Collisional Subalkaline Granitoids in the Area of Mineral’nye Vody, Caucasus: T-P-f O 2 Crystallization Conditions, Fractional and Fluid-Magmatic Differentiation,” Petrologiya 13(2), 139–178 (2005) [Petrology 13, 122–160 (2005)].

    Google Scholar 

  34. J. M. Palin, S. Epstein, and E. M. Stolper, “Oxygen Isotope Partitioning between Rhyolitic Glass/Melt and CO2: an Experimental Study at 500–950°C and 1 bar,” Geochim. Cosmochim. Acta. 60, 1963–1973 (1996).

    Article  Google Scholar 

  35. M. T. Peters and S. M. Wickham, “On the Causes of 18O Depletion and 18O/16O Homogenization During Regional Metamorphism, the East Humboldt Range Core Complex, Nevada,” Contrib. Mineral. Petrol. 119, 68–82 (1995).

    Article  Google Scholar 

  36. I. R. Pohl, J. C. Hess, B. Kober, et al., “Origin and Petrologenesis of the Miocene Trachyrhyolites (Atype) from the Northern Part of the Greater Caucasus,” in Magmatism of Rifts and Foldbelts (Nauka, Moscow, 1993), pp. 108–125 [in Russian].

    Google Scholar 

  37. Q. Qian, S. L. Chung, T. Y. Lee, et al., “Mesozoic High-Ba-Sr Granitoids from North China: Geochemical Characteristics and Geological Implications,” Terra Nova 15(4), 272–278 (2003).

    Article  Google Scholar 

  38. P. W. Reiners, B. K. Nelson, and S. W. Nelson, “Grustal Contamination of Magma from Compositionally Zoned Plutons and Associated Ultramafic Intrusions of the Alaska Range,” J. Petrol. 37(2), 261–292 (1996).

    Article  Google Scholar 

  39. R. O. Rye, R. D. Schuiling, D. M. Rue, and J. B. H. Jansen, “Carbon, Hydrogen and Oxygen Isotope Studies of the Regional Metamorphic Complex at Naxos, Greece,” Geochim. Cosmochim. Acta 40, 1031–1049 (1976).

    Article  Google Scholar 

  40. L. V. Sazonova, A. A. Nosova, A. Ya. Dokuchaev, et al., “The Latite Type of Late Collisional Granitoids (Northern Caucasus): Geochemical and Mineralogical Features,” Dokl. Akad. Nauk 393(2), 1–5 (2003) [Dokl. Earth Sci. 393, 1192–1195 (2003)].

    Google Scholar 

  41. V. I. Shevchenko, “Conditions of Formation of Upper Jurassic Chemogenic Deposits of Cis-Caucasus,” Byull. Mosk. O-va Isp. Prir. Otd. Geologii 67(2), 104–119 (1992).

    Google Scholar 

  42. N. D. Sobolev, A. A. Lebedev-Zinov’ev, and A. S. Nazarov, “Neogene Intrusions and pre-Mesozoic Basement of the Caucasian Mineral Waters Region,” Tr. Vses. Inst. Mineral. Syr., Nov, Ser., No. 3, (1959).

  43. V. A. Suvorova and E. O. Dubinina, “New Device for Conversion of Oxygen in SiO2 for the Purpose of Its Isotope Analysis,” Geokhimiya, No. 2, 286–289 (1994).

  44. H. Strauss, “Geological Evolution from Isotope Proxy Signals—Sulfur,” Chem. Geol. 161, 89–101 (1999).

    Article  Google Scholar 

  45. J. Tarney and C. E. Jones, “Trace Element Geochemistry of Orogenic Igneous Rocks and Crustal Growth Models,” J. Geol. Soc. London 151, 855–868 (1994).

    Article  Google Scholar 

  46. H. P. Taylor, Jr., “Oxygen and Hydrogen Isotope Studies of Plutonic Granitic Rocks,” Earth Planet. Sci. Lett. 38, 177–210 (1978).

    Article  Google Scholar 

  47. L. V. Tauson, Geochemical Types and Ore Potential of Granitoids (Nedra, Moscow, 1977) [in Russian].

    Google Scholar 

  48. Yu. P. Troshin, “Association of Rare-Metal Plumasite Granites with High-Potassium Calc-Alkaline Volcanoplutonic Series of the Rocks,” in Geochemistry of Volcanic Rocks of Different Geodynamic Settings (Nauka, Novosibirsk, 1986), pp. 93–111 [in Russian].

    Google Scholar 

  49. J. W. Valley, “Stable Isotope Thermometry at High Temperatures,” in Stable Isotope Geochemistry, Rev. Mineral. Geochem. 43, 365–414 (2001).

  50. J. Veizer, D. Ala, K. Azmy, P. Bruckschen, et al., “87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater,” Chem. Geol. 161, 59–89 (1999).

    Article  Google Scholar 

  51. A. J. R. White, “Sources of Granite Magmas,” Geol. Soc. Amer. Abstr. 11, 539 (1979).

    Google Scholar 

  52. S. M. Wickham, H. P. Taylor, A. W. Snoke, and J. R. O’Nell, “An Oxygen and Hydrogen Isotope Study of High-Grade Metamorphism and Anatexis in the Ruby Mountains-East Humboldt Range Core Complex, Nevada,” in Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Geochem. Soc. Spec. Publ. No. 3, 373–390 (1991).

  53. S. M. Wickham and H. R. Taylor, “Stable Isotope Evidence for Large-Scale Seawater Infiltration in a Regional Metamorphic Terrane; the Trois Seigneurs Massif, Pyrenees, France,” Contrib. Mineral. Petrol. 91, 122–137 (1985).

    Article  Google Scholar 

  54. Zi-Fu Zhao and Yong-Fei Zheng, “Calculation of Oxygen Isotope Fractionation in Magmatic Rocks,” Chem. Geol. 193, 59–80 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Dubinina.

Additional information

Original Russian Text © E.O. Dubinina, A.A. Nosova, A.S. Avdeenko, L.Ya. Aranovich, 2010, published in Petrologiya, 2010, Vol. 18, No. 3, pp. 227–256.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubinina, E.O., Nosova, A.A., Avdeenko, A.S. et al. Isotopic (Sr, Nd, O) systematics of the high Sr-Ba Late Miocene granitoid intrusions from the Caucasian Mineral Waters region. Petrology 18, 211–238 (2010). https://doi.org/10.1134/S086959111003001X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959111003001X

Keywords

Navigation