Skip to main content
Log in

Fluid flows in regional deformation zones

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This paper considers petrogenetic processes related to the influence of fluid flows on rocks in regional deformation zones at different depth levels within the Earth’s crust. It was shown that silica mobility could be important for eclogites developing after (meta)gabbroids: in the absence of quartz, the main eclogitic minerals, garnet and omphacite, are stabilized to significantly lower pressures compared with the quartz-saturated system. Based on petrological data and the analysis of oxygen isotope distribution in coexisting minerals from the hypersthene-sillimanite Mg-Al-Si granulites of Palenyi Island (Por’ya Guba of the Lapland granulite belt), it was concluded that these rocks were formed at high temperature and pressure (approximately 900°C and 10 kbar) under the influence of an external fluid. The influence of the fluid flow had to be rather short and spatially nonuniform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Ague, “Fluid Infiltration and Transport of Major, Minor and Trace Elements during Regional Metamorphism of Carbonate Rocks, Wepawaug Schist, Connecticut, USA,” Am. J. Sci. 303, 753–816 (2003).

    Article  Google Scholar 

  2. L. Y. Aranovich, “Granulite-Facies Fluids: Physicochemical Aspect,” in Granulite Complexes in Precambrian and Phanerozoic Geologic Evolution (IGGD RAN, St. Petersburg, 2007), pp. 35–39 [in Russian].

    Google Scholar 

  3. L. Y. Aranovich and R. G. Berman, “Optimized Standard State and Solution Properties of Minerals: II. Calculation of Phase Diagrams and Geothermobarometry Applications,” Contrib. Mineral. Petrol. 126, 23–32 (1996).

    Article  Google Scholar 

  4. L. Ya. Aranovich and V. M. Kozlovskii, “The Role of Silica Mobility in the Formation of ‘Incipient’ Eclogites,” Geokhimiya, No. 2, 210–215 (2009) [Geochem. Int. 47, 199–204 (2009)].

  5. L. Y. Aranovich and R. C. Newton, “H2O Activity in Concentrated NaCl Solutions at High Pressures and Temperatures Measured by the Brucite-Periclase Equilibrium,” Contrib. Mineral. Petrol. 125, 200–212 (1996).

    Article  Google Scholar 

  6. L. Y. Aranovich and R. C. Newton, “H2O Activity in Concentrated KCl and KCl-NaCl Solutions at High Temperatures and Pressures Measured by the Brucite-Periclase Equilibrium,” Contrib. Mineral. Petrol. 127, 261–271 (1997).

    Article  Google Scholar 

  7. L. Ya. Aranovich, K. K. Shmulovich, and V. V. Fed’kin, “Specifics of H2O and CO2 Regime during Regional Metamorphism,” in Sketches in Physicochemical Petrology (Nauka, Moscow, 1987), No. 14, pp. 96–117.

    Google Scholar 

  8. H. Austrheim, “The Granulite-Eclogite Facies Transition: A Comparison of Experimental Work and a Natural Occurrence in the Bergen Arcs, Western Norway,” Lithos 25, 163–169 (1990).

    Article  Google Scholar 

  9. H. Austrheim and W. L. Griffin, “Shear Deformation and Eclogite Formation within Granulite-Facies Anorthosites of the Bergen Arcs, Western Norway,” Chem. Geol. 50, 267–281 (1985).

    Article  Google Scholar 

  10. V. V. Balagansky and V. A. Glebovitsky, “Lapland Granulite and Tanaelv Belts,” in Early Precambrian of the Baltic Shield (Nauka, St. Petersburg, 2005), pp. 127–175 [in Russian].

    Google Scholar 

  11. R. G. Berman and L. Y. Aranovich, “Optimized Standard State and Solution Properties of Minerals: I. Model Calibration for Olivine, Orthopyroxene, Cordierite, Garnet, and Ilmenite in the System FeO-MgO-CaO-Al2O3-TiO2-SiO2,” Contrib. Mineral. Petrol. 126, 1–22 (1996).

    Article  Google Scholar 

  12. R. G. Berman, L. Y. Aranovich, and D. R. M. Pattison, “Reassessment of the Garnet-Clinopyroxene Fe-Mg Exchange Thermometer: II. Thermodynamic Analysis,” Contrib. Mineral. Petrol. 119, 30–42 (1995).

    Article  Google Scholar 

  13. N. S. Bortnikov, G. K. Gamyanin, O. V. Vikent’eva, et al., “Fluid Composition and Origin in the Hydrothermal System of the Nezhdaninsky Gold Deposit, Sakha (Yakutia), Russia,” Geol Rudn. Mestorozhd. 49(2), 99–145 (2007) [Geol. Ore. Dep. 49, 87–128 (2007)]

    Google Scholar 

  14. Y. Bottinga and M. Javoy, “Comments on Oxygen Isotope Geofhermometry,” Earth Planet. Sci. Lett. 20, 250–265 (1973).

    Article  Google Scholar 

  15. J.-P. Burg and T. V. Gerya, “The Role of Viscous Heating in Barrovian Metamorphism of Collisional Orogens: Thermomechanical Models and Application to the Lepontine Dome in the Central Alps,” J. Metamorph. Geol. 23, 75–95 (2005).

    Article  Google Scholar 

  16. S. A. Bushmin, D. V. Dolivo-Dobrovolsky, and Yu. M. Lebedeva, “Infiltration Metasomatism under High-Pressure Granulite-Facies Conditions Based on Orthopyroxene-Sillimanite Rocks in Shear Zones of the Lapland Granulite Belt,” Dokl. Akad. Nauk 412(3), 383–387 (2007) [Dokl. Earth Sci. 412, 106–109 (2007)].

    Google Scholar 

  17. J. A. D. Connolly and Y. Y. Podladchikov, “Compaction-Driven Fluid Flow in Viscoelastic Rock,” Geodinamica Acta 11, 55–84 (1998).

    Article  Google Scholar 

  18. J. A. D. Connolly and Y. Y. Podladchikov, “Fluid Flow in Compressive Tectonic Settings: Implications for Mid-Crustal Seismic Reflectors and Downward Fluid Migration,” J. Geophys. Res. 109, B04201 (2004).

    Article  Google Scholar 

  19. R. A. Cox and A. Indares, “Transformation of Fe-Ti Gabbro to Coronite, Eclogite and Amphibolite in the Baie du Nord Segment, Manicouagan Imbricate Zone, Eastern Grenville Province,” J. Metamorph. Geol. 17, 537–555 (1999).

    Article  Google Scholar 

  20. E. O. Dubinina and L. Z. Lakshtanov, “A Kinetic Model of Exchange in Dissolution-Precipitation Processes,” Geochim. Cosmochim. Acta 61, 2265–2273 (1997).

    Article  Google Scholar 

  21. Early Precambrian of the Baltic Shield, Ed. by V. A. Glebovitsky (Nauka, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  22. W. S. Fyfe, “The Granulite Facies, Partial Melting and the Archean Crust,” Philos. Trans. R. Soc. London 273, 457–461 (1973).

    Article  Google Scholar 

  23. R. T. Gregory and R. E. Criss, “Isotopic Exchange in Open and Closed Systems,” Rev. Mineral. Geochem. 16, 91–127 (1986).

    Google Scholar 

  24. B. Jamtveit, H. Austrheim, and A. Malthe-Sorenssen, “Accelerated Hydration of the Earth’s Deep Crust Induced by Stress Perturbations,” Nature 408, 75–78 (2000).

    Article  Google Scholar 

  25. A. S. Janardhan, R. C. Newton, and E. C. Hansen, “The Transformation of Amphibolite Facies Gneiss to Charnockite in Southern Karnataka and Northern Tamil Nadu, India,” Contrib. Mineral. Petrol. 79, 130–149 (1982).

    Article  Google Scholar 

  26. Y. Jia, R. Kerrich, A. K. Gupta, and W. S. Fyfe, “15N-Enriched Gondwana Lamproites, Eastern India: Crustal N in the Mantle Source,” Earth Planet. Sci. Lett. 215, 43–56 (2003).

    Article  Google Scholar 

  27. R. Kerrich, “Fluid Infiltration into Fault Zones: Chemical, Isotopic, and Mechanical Effects,” Paleophysics 124, 225–268 (1986).

    Google Scholar 

  28. S. P. Korikovsky, “Pressure Effect on the Stability and Assemblages of Acid Plagioclase in Medium-Temperature Metabasites, Eclogites and Associated Gneisses,” Geologica Carpathica 50, 115–117 (1999).

    Google Scholar 

  29. S. P. Korikovsky, “Reaction Phase Equilibria during Recrystallization of the Paleoproterozoic Gabbronorites of the Belomorian Complex under Conditions Close to Amphibolite-Eclogite Facies Conditions,” in Proceedings of Conference Belomorian Mobile Belt and Its Analogues: Geology, Geochronology, Geodynamics, and Metallogeny (Karel’skii NTs RAN, Petrozavodsk, 2005), pp. 189–191 [in Russian].

    Google Scholar 

  30. D. S. Korzhinskii, Factors of Mineral Equilibria and Mineralogical Depth Facies (Akad. Nauk SSSR, Moscow, 1940) [in Russian].

    Google Scholar 

  31. D. S. Korzhinskii, Physicochemical Principles of Analysis of Mineral Assemblages (Akad. Nauk SSSR, Moscow, 1957) [in Russian].

    Google Scholar 

  32. N. E. Kozlova, V. V. Balaganskii, M. N. Bogdanova, and S. A. Rezhenova, “Structural-Petrological Study of Orthopyroxene-Sillimanite Assemblages of the Lapland Granulites,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 4, 66–76 (1991).

  33. V. M. Kozlovsky and L. Ya. Aranovich, “Geological and Structural Conditions of Eclogitization of Paleoproterozoic Basic Dikes in the Eastern Belomorian Mobile Belt,” Geotektonika, No. 4, 70–84 (2008) [Geotectonics 42, 305–317 (2008)].

  34. C. E. Manning, “The Solubility of Quartz in the Lower Crust and Upper Mantle,” Geochim. Cosmochim. Acta 58, 4831–4839 (1994).

    Article  Google Scholar 

  35. J.-F. Moyen, G. Stevens, and A. Kisters, “Record of Mid-Archean Subduction from Metamorphism in the Barberton Terrain, South Africa,” Nature 442, 559–562 (2006).

    Article  Google Scholar 

  36. R. Nair and T. Chacko, “Fluid-Absent Melting of High-Grade Semi-Pelites: P-T Constraints on Orthopyroxene Formation and Implications for Granulite Genesis,” J. Petrol. 43, 2121–2143 (2002).

    Article  Google Scholar 

  37. R. C. Newton and C. E. Manning, “Quartz Solubility in H2O-NaCl and H2O-CO2 Solutions at Deep Crust-Upper Mantle Pressures and Temperatures: 2–15 kbar and 500–900°C,” Geochim. Cosmochim. Acta 64, 2993–3005 (2000).

    Article  Google Scholar 

  38. R. C. Newton, J. V. Smith, and B. F. Windley, “Carbonic Metamorphism, Granulites and Crustal Growth,” Nature 288, 45–50 (1980).

    Article  Google Scholar 

  39. R. C. Newton, L. Y. Aranovich, E. G. Hansen, and B. A. Vandenheuvel, “Hypersaline Fluids in Precambrian Deep-Crustal Metamorphism,” Precambrian Res. 38, 21–34 (1998).

    Google Scholar 

  40. J. R. O’Neil and H. P. Taylor, Jr., “The Oxygen Isotope and Cation Exchange Chemistry of Feldspars,” Am. Mineral. 52, 1414–1437 (1967).

    Google Scholar 

  41. A. L. Perchuk, “Eclogites of the Bergen Arcs Complex, Norway: Petrology and Mineral Chronometry,” Petrologiya 10(2), 115–137 (2002) [Petrology 10, 99–118 (2002)].

    Google Scholar 

  42. A. L. Perchuk and L. Ya. Aronovich, “Thermodynamics of Jadeite-Diopside-Hedenbergite Solid Solution,” Geokhimiya, No. 4, 539–547 (1991).

  43. L. L. Perchuk and T. V. Gerya, “Evidence for Potassium Mobility during the Charnockitization of Gneisses,” Dokl. Akad. Nauk 330(2), 245–248 (1993).

    Google Scholar 

  44. K. Petrini and Yu. Podladchikov, “Lithospheric Pressure-Depth Relationship in Compressive Regions of Thickened Crust,” J. Metamorph. Geol. 18, 67–77 (2000).

    Article  Google Scholar 

  45. P. Philippot and J. Selverstone, “Trace-Element-Rich Brines in Eclogitic Veins: Implications for Fluid Composition and Transport during Subduction,” Contrib. Mineral. Petrol. 106, 417–430 (1991).

    Article  Google Scholar 

  46. H. Raimbourg, B. Goffe, and L. Jolivet, “Garnet Reequilibration and Growth in the Eclogite Facies and Geodynamical Evolution near Peak Metamorphic Conditions,” Contrib. Mineral. Petrol. 153, 1–28 (2007).

    Article  Google Scholar 

  47. F. M. Richter and D. McKenzie, “Dynamical Models for Melt Segregation from a Deformable Rock Matrix,” J. Geol. 92, 729–740 (1984).

    Article  Google Scholar 

  48. A. Y. Rozhko, Y. Y. Podladchikov, and F. Renard, “Failure Patterns Caused by Localized Rise in Pore-Fluid Overpressure and Effective Strength of Rocks,” Geophys. Res. Lett. 34, L22304 (2007).

    Google Scholar 

  49. V. L. Rusinov, “Lithospheric Shear Zones and Their Role in the Endogenic Activity of the Earth,” Geotektonika, No. 3, 66–79 (2005) [Geotectonics 39, 224–235 (2005)].

  50. I. D. Ryabchikov, “Calculation of Thermodynamic Activity of the Oxide Components for Different Types of Igneous Rocks,” in Sketches of Physicochemical Petrology (Nauka, Moscow, 1969), No. 1, 286–300.

    Google Scholar 

  51. A. A. Shchipanskii, A. P. Konilov, M. V. Mints, et al., “Late Archean Eclogites of Salma, Belomorian Mobile Belt, Kola Peninsula. Russia: Petrogenesis, Age, and Significance for Geodynamic Interpretation of Settings of the Formation of Early Continental Crust,” in Proceedings of Conference Belomorian Mobile Belt and Its Analogues: Geology, Geochronology, Geodynamics, and Metallogeny (Karel’skii NTs RAN, Petrozavodsk, 2005), pp. 324–327 [in Russian].

    Google Scholar 

  52. K. I. Shmulovich, Carbon Dioxide in High-Temperature Mineral Formation (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  53. K. Shmulovich, C. Graham, and B. Yardley, “Quartz, Albite and Diopside Solubilities in H2O-NaCl and H2O-CO2 Fluids at 0.5–0.9 GPa,” Contrib. Mineral. Petrol. 141, 95–108 (2001).

    Google Scholar 

  54. H. Taylor, Jr., “Water/Rock Interactions and the Origin of H2O in Granitic Batholiths,” J. Geol. Soc. London 133, 509–558 (1977).

    Article  Google Scholar 

  55. A. B. Thompson, “Dehydration Melting of Pelitic Rocks and the Generation of H2O-Undersaturated Liquids,” Am. J. Sci. 282, 1567–1595 (1982).

    Google Scholar 

  56. J. L. R. Touret, “Fluid Inclusions in High Grade Metamorphic Rocks,” in Short Course in Fluid Inclusions: Applications to Petrology, Ed. by L. S. Hollister and M. Crawford, Mineral. Ass. Can. 6, 182–208 (1981).

  57. J. W. Valley, “Stable Isotope Geochemistry of Metamorphic Rocks,” in Stable Isotopes in High-Temperature Geological Processes, Ed. by J. W. Valley, H. P. Taylor and J. R. O’Neil, (Mineral. Soc. Am., Washington), Rev. Mineral. 16, 445–489 (1986).

    Google Scholar 

  58. J. W. Valley, “Stable Isotope Thermometry at High Temperatures,” in Stable Isotope Geochemistry, Ed. by J. W. Valley and D. R. Cole (Mineral. Soc. Amer. Washington), Rev. Mineral. Geochem. 43, 365–414 (2001).

    Google Scholar 

  59. Y. F. Zheng, “Calculation of Oxygen Isotope Fractionation in Anhydrous Silicate Minerals,” Geochim. Cosmochim. Acta 57, 1079–1091 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ya. Aranovich.

Additional information

Original Russian Text © L.Ya. Aranovich, N.S. Bortnikov, S.A. Bushmin, O.V. Vikent’eva, E.O. Dubinina, V.M. Kozlovskii, Yu.M. Lebedeva, 2009, published in Petrologiya, 2009, Vol. 17, No. 4, pp. 415–436.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aranovich, L.Y., Bortnikov, N.S., Bushmin, S.A. et al. Fluid flows in regional deformation zones. Petrology 17, 389–409 (2009). https://doi.org/10.1134/S0869591109040055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591109040055

Keywords

Navigation