Skip to main content
Log in

High-temperature amphibolization synchronous with enderbite migmatization of mafic granulites in granulite-enderbite-charnockite complexes in Karelia

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Detailed data on the area of lakes Notozero-Kovdozero and Lake Kerchug are used to analyze petrological aspects (mineral replacement reactions Opx + Cpx + PlHbl with plagioclase of various composition, mineral compositions, and P-T parameters) of the high-temperature amphibolization of mafic granulites in the Archean granulite-enderbite-charnockite (GECH) complexes of Karelia. It was concluded that the amphibolization of the mafic crystalline schists in GECH complexes occurs at the peripheral zones of enderbite migmatization. In the course of pyroxene replacement by hornblende, the primary two pyroxene-plagioclase granulites are transformed into two pyroxene-amphibole-plagioclase crystalline schists with more sodic plagioclase and, if the process is more intense, into amphibolites. Our results testify that equilibrium in mafic crystalline schists at the peak of granulite metamorphic and the inflow of Na-rich fluids begins to shift toward an increase in the content of Na-bearing mafic minerals (amphiboles) instead of pyroxenes. At the same time, more sodic plagioclase is formed in place of labradorite-bytownite. The process of amphibolization in these rocks differs from that related to either retrograde metamorphism or younger diaphthoresis under amphibolite-facies conditions in geochemical regime, P-T parameters, and the type of hornblendes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.Y. Aranovich and R. C. Newton, “Reversed Determination of the Reaction: Phlogopite + Quartz = Enstatite + Potassium Feldspar + H2O in the Ranges 750–875°C and 2–12 kbar at Low H2O Activity with Concentrated KCl Solutions,” Am. Mineral. 83, 193–204 (1998).

    Google Scholar 

  2. P. Bertrand and J.-C. C. Mercier, “The Mutual Solubility of Coexisting Ortho- and Clinopyroxene: toward an Absolute Geothermometer for the Natural System?” Earth Planet. Sci. Lett. 76, 109–122 (1985).

    Article  Google Scholar 

  3. Y. D. Blundy and T. Y. B. Holland, “Calcic Amphibole Equilibria and a New Amphibole-Plagioclase Geothermometer,” Contrib. Mineral. Petrol. 104, 208–224 (1990).

    Article  Google Scholar 

  4. E. H. Brown, “The Crossite Content of Ca-Amphibole as a Guide to Pressure of Metamorphism,” J. Petrol. 18, 53–72 (1977).

    Google Scholar 

  5. R. G. Cawthorn and K. D. Collerson, “The Recalculation of Pyroxene End-Member Parameters and the Estimation of Ferrous and Ferric Iron Content from Electron Microprobe Analyses,” Am. Mineral. 59, 1203–1208 (1974).

    Google Scholar 

  6. J. M. Cebria, “PX: A Program for Pyroxene Classification and Calculation of End-Members,” Am. Mineral. 75, 1426–1427 (1990).

    Google Scholar 

  7. V. I. Fonarev and A. A. Graphchikov, “Two-Pyroxene Thermometry: A Critical Evolution,” in Progress in Metamorphic and Magmatic Petrology. A Memorial Volume in Honor of D.S. Korzhinsky, Ed. by L. L. Perchuk (Cambridge University Press, Cambridge, 1991) pp. 65–92.

    Google Scholar 

  8. V. I. Fonarev and A. A. Grafchikov, “Two-Pyroxene Geothermometer,” Mineral. Zh. 4(5), 3–12 (1982).

    Google Scholar 

  9. D. J. Henry and L. G. Medaris, “Application of Pyroxene and Olivine-Spinel Geothermometers to the Alpine Peridotites in Southwestern Oregon,” Geol. Soc. Amer. Abstr. 8, 913–914 (1976).

    Google Scholar 

  10. L. S. Hollister, G. C. Grissom, E. K. Peters, et al., “Confirmation of the Empirical Correlation of Al in Hornblende with Pressure of Solidification of Calc-Alkaline Plutons,” Am. Mineral. 72, 231–239 (1987).

    Google Scholar 

  11. J. R. Holloway and C. W. Burnham, “Melting Relations of Basalt with Equilibrium Water Pressure less than Total Pressure,” J. Petrol. 13, 1–29 (1972).

    Google Scholar 

  12. S. P. Korikovsky and L. I. Khodorevskaya, “Granitization of Paleoproterozoic High-Pressure Metagabbro-Norites of the Belomorian Group in Gorelyi Island, Kandalaksha Bay Area, Baltic Shield,” Petrologiya 14(5), 453–481 (2006) [Petrology 14, 423–451 (2006)].

    Google Scholar 

  13. N. E. Korol’, “Metamorphic Evolution of the Granulite-Enderbite-Charnockite Complexes of Karelia and Central Finland,” in Proceedings of International (10th All-Russia) Petrographic Conference “Petrography of 21st Century,“ Apatity, Russia, 2005 (Apatity, 2005a), 3, pp. 143–145 [in Russian].

    Google Scholar 

  14. N. E. Korol, “Mafic Granulites of Karelia and Central Finland,” in Geology and Mineral Resources of Karelia (Petrozavodsk, 2005b), 8, pp. 18–29 [in Russian].

    Google Scholar 

  15. N. E. Korol, Extended Abstracts of Candidate’s Dissertation in Geology and Mineralogy (IGEM AN SSSR, Moscow, 1990).

    Google Scholar 

  16. D. S. Korzhinsky, Transmagmatic Fluids and Magmatic Replacement. Petrography (Mosk. Gos. Univ., Moscow, 1976), Vol. 1, pp. 117–129 [in Russian].

    Google Scholar 

  17. R. Kretz, “Transfer and Exchange Equilibria in a Portion of the Pyroxene Quadrilateral as Deduced from Natural and Experimental Data,” Geochim. Cosmoch. Acta. 46, 411–421 (1982).

    Article  Google Scholar 

  18. B. E. Leake, “On Aluminous and Edenitic Hornblendes,” Mineral. Mag. 38, 389–407 (1971).

    Article  Google Scholar 

  19. B. E. Leake, “The Relationship between Composition of Calciferous Amphibole and Grade of Metamorphism. Controls of Metamorphism,” Geol. J., Spec. Iss., No. 1, 299–318 (1965).

  20. B. E. Leake, A. R. Woolley, C. E. S. Arps, et al., “Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names,” Eur. J. Mineral. 9, 623–651 (1997).

    Google Scholar 

  21. Minerals. A Reference Book (Nauka, Moscow, 1981), Vol. 3, p. 395 [in Russian].

  22. N. Morimoto, “Nomenclature of Pyroxene,” Mineral. Mag. 52, 535–550 (1988).

    Article  Google Scholar 

  23. J. Paavola, “On the Archean High-Grade Metamorphic Rock in the Varpaisjarvi Area, Central Finland,” Geol. Surv. Finl. Bull. 327 (1984).

  24. L. P. Plyusnina, “Experimental Study of Equilibrium of Metabasites, Geothermobarometry,” in Experiment in Solution of the Relevant Geological Problems (Moscow, 1986), pp. 174–183 [in Russian].

  25. R. Powell, “The Thermodynamics of Pyroxene Geotherms,” Phil. Trans. R. Soc. London, 288, 457–469 (1978).

    Article  Google Scholar 

  26. P. Raase, “Al and Ti Content of Hornblende, Indicators of Pressure and Temperature of Regional Metamorphism,” Contrib. Mineral. Petrol. 45, 231–236 (1974).

    Article  Google Scholar 

  27. M. W. Schmidt, “Amphibole Composition as a Function of Buffer Assemblage and Pressure: an Experimental Approach,” EOS, Trans. Am. Geophys. Union. AGU Fall Meeting. 72, 547 (1991).

    Google Scholar 

  28. J. C. Schumacher, “The Estimation of Ferric Iron in Electron Microprobe Analysis of Amphiboles/Nomenclature of Amphiboles” Eur. J. Mineral. 9, 643–651 (1997).

    Google Scholar 

  29. G. Sen and R. Jones, “Experimental Equilibration of Multicomponent Pyroxenes in the Spinel Peridotite Field: Implications for Practical Thermometers and a Possible Barometer,” J. Geophys. Res. 4(B12), 17871–17880 (1989).

    Article  Google Scholar 

  30. V. V. Slavinskii, “Two-Pyroxene Geothermometry,” Mineral. Zh. 5(6), 29–38 (1983).

    Google Scholar 

  31. F. S. Spear, “Amphibole-Plagioclase Equilibria: An Empirical Model for the Relation Albite + Tremolite = Edenite + Quartz,” Contrib. Mineral. Petrol. 77, 355–364 (1981).

    Article  Google Scholar 

  32. F. S. Spear, “Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths,” Mineral. Soc. Amer. Monograph. (1995).

  33. O. I. Volodichev and N. E. Korol’, “Granulite-Enderbite-Charnockite Complexes of Karelia,” in Proceedings of International Conference on the Precambrian of Northern Eurasia (St. Petersburg, 1997), pp. 22–23 [in Russian].

  34. O. I. Volodichev, “Metamorphism,” in Geology of Karelia (Nauka, Leningrad, 1987), pp. 152–162, 171–175 [in Russian].

    Google Scholar 

  35. O. I. Volodichev, Belomorian Complex of Karelia (Geology and Petrology) (Nauka, Leningrad, 1990) [in Russian].

    Google Scholar 

  36. O. I. Volodichev, “P-T-t Paths of the Metamorphic Evolution of the Late Archean Belomorian Collisional Structure,” in Proceedings of Scientific Conference “Karelia and RFBR”, Petrozavodsk, Russia, 2002 (Petrozavodsk, 2002), pp. 59–60 [in Russian].

  37. R. A. Wells, “Pyroxene Thermometry in Simple and Complex System,” Contrib. Mineral. Petrol. 62, 129–139 (1977).

    Article  Google Scholar 

  38. B. J. Wood and S. Banno, “Garnet-Orthopyroxene and Orthopyroxene-Clinopyroxene Relationships in Simple and Complex Systems,” Contrib. Mineral. Petrol. 42, 109–124 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Korol.

Additional information

Original Russian Text © N.E. Korol, 2009, published in Petrologiya, 2009, Vol. 17, No. 4, pp. 378–396.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korol, N.E. High-temperature amphibolization synchronous with enderbite migmatization of mafic granulites in granulite-enderbite-charnockite complexes in Karelia. Petrology 17, 352–370 (2009). https://doi.org/10.1134/S0869591109040031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591109040031

Keywords

Navigation