Skip to main content
Log in

Sources and evolution of the Cenozoic suprasubduction magmatism of the Olyutorsky tectonic block, southern Koryak highland

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This paper reports the results of an investigation of the geochemical and isotopic compositions of rocks formed during the Eocene suprasubduction magmatism in the Olyutorsky tectonic block. The contribution of various suprasubduction components to the formation of magmatic melts was estimated; the characteristics of the Eocene and Miocene-Quaternary suprasubduction magmatism of the Olyutorsky tectonic block were compared; and relations of the Cenozoic magmatism to the tectonic development of the block were evaluated. The Eocene-early Oligocene suprasubduction magmas were derived from geochemically and isotopically heterogeneous garnet lherzolites in a mantle wedge. The initially depleted lherzolites of the mantle wedge were probably locally and variably enriched by OIB-type mantle melts before the generation of island-arc magmas and then again depleted below the MORB level by the extraction of magmatic materials from them. In the Eocene, a considerable amount of quartz-feldspar sediments enriched in radiogenic Nd was consumed in the subduction zone, which resulted in a strong contamination of magmas derived from the garnet lherzolites of the mantle wedge. The later stages of subduction were accompanied by active generation of adakite magmas with depleted Nd isotope signatures and HFSE-rich melts showing no evidence for their contamination by sialic sediments. It was supposed that the Late Cenozoic subduction zone plunged northward beneath the Olyutorsky tectonic block. It was shown that the established characteristics of the suprasubduction magmatism of the Olyutorsky tectonic block could be related to Cenozoic spreading processes in the proto-Komandorsky basin of the Bering Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Arculus and R. Powell, “Source Component Mixing in the Regions of Arc Magma Generation” J. Geophys. Res. 91, 5913–5926 (1986).

    Google Scholar 

  2. T. B. Bayanova, Age of Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  3. N. A. Bogdanov, V. D. Chekhovich, A. N. Sukhov, and V. S. Vishnevskaya, “Tectonics of the Olyutorsky Zone”, in Essays on the Tectonics of the Koryak Highland (Nauka, Moscow, 1982), pp. 189–217 [in Russian].

    Google Scholar 

  4. N. P. Chamov, “Chemical Composition of Cretaceous-Paleogene Volcanogenic-Sedimentary Rocks of the Govena-Karagin Block, Southern Koryak Upland,” Litol. Polezn. Iskop. 31, 393–405 (1996) [Lithol. Miner. Resour. 31, 348–359 (1996)].

    Google Scholar 

  5. V. D. Chekhovich, Tectonics and Geodynamics of the Folded Framing of Small Oceanic Basins (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  6. M. J. Defant and M. S. Drummond, “Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere,” Nature 347, 662–665 (1990).

    Article  Google Scholar 

  7. M. S. Drummond and M. J. Defant, “A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons,” J. Geophys. Res. 95, 21503–21521 (1990).

    Article  Google Scholar 

  8. A. E. Ewart and C. J. Hawkesworth, “The Pleistocene-Recent Tonga-Kermadec Arc Lavas: Interpretations of New Isotopic and Rare-Earth Data in Term of a Depleted Mantle Source Model,” J. Petrol. 28, 495–530 (1987).

    Google Scholar 

  9. Geology of the Western Part of the Bering Sea (Nauka, Moscow, 1990) [in Russian].

  10. J. B. Gill, Orogenic Andesites and Plate Tectonics (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  11. Yu. B. Gladenkov, G. P. Bagdasaryan, V. N. Ben’yamovskii, et al., “Plankton in the Paleogene of the Il’pinsky Peninsula,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 10, 85–91 (1988a).

  12. Yu. B. Gladenkov, G. M. Brattseva, L. I. Mitrofanova, and V. N. Sinel’nikova, “Subdivision of the Oligocene-Lower Miocene Sequences of Eastern Kamchatka (Korf Bay),” Izv. Akad. Nauk SSSR, Ser. Geol., No. 8, 3–16 (1988b).

  13. A. V. Ivanov, A. B. Perepelov, T. A. Yasnygina, et al., “Rift- and Arc-Type Basaltic Volcanism of the Sredinny Ridge, Kamchatka: A Case Study of the Payalpan Volcanotectonic Structure,” in Metallogeny of the Pacific Northwest: Tectonics, Magmatism and Metallogeny of Active Continental Margins, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2004), pp. 345–349.

    Google Scholar 

  14. K. P. Jochum, H. M. Seufert, B. Spettel, and H. Palme, “The Solar System Abundances of Nb, Ta, and Y and the Relative Abundances of Refractory Lithophile Elements in Differentiated Planetary Bodies,” Geochim. Cosmoch. Acta 50, 1173–1183 (1986).

    Article  Google Scholar 

  15. R. W. Kay, “Aleutian Magnesian Andesites: Melts from Subducted Pacific Ocean Crust,” J. Volcanol. Geotherm. Res. 4, 117–132 (1978).

    Article  Google Scholar 

  16. P. B. Kelemen, “Genesis of the High Mg# Andesites and the Continental Crust,” Contrib. Mineral. Petrol. 120, 1–19 (1995).

    Google Scholar 

  17. P. B. Kelemen, K. Hanghoj, and A. R. Greene, “One View of the Geochemistry on Subduction-Related Magmatic Arc, with an Emphasis on Primitive Andesite and Lower Crust,” in Treatise on Geochemistry, Ed. by R. Calrson (Elsevier, Amsterdam, 2003), Vol. 3, pp. 593–659.

    Google Scholar 

  18. P. Kepezhinskas, F. McDermott, M. J. Defant, et al., “Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis,” Geochim. Cosmochim. Acta 61, 577–600 (1997).

    Article  Google Scholar 

  19. P. K. Kepezhinskas, Cenozoic Volcanic Series of the Framing of Marginal Seas (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  20. D. V. Kovalenko, Paleomagnetism of the Geologic Complexes of Kamchatka and Southern Koryakiya: Tectonic and Geophysical Interpretation (Nauchnyi Mir, Moscow, 2003) [in Russian].

    Google Scholar 

  21. I. R. Kravchenko-Berezhnoy, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (ILSAN, Moscow, 1989).

    Google Scholar 

  22. I. R. Kravchenko-Berezhnoy, N. P. Chamov, and E. A. Scherbinina, “MORB-like Tholeiites in a Late Eocene Turbidite Sequence on Karaginsky Island (the Western Bering Sea),” Ofiolity 15, 231–250 (1990).

    Google Scholar 

  23. H. Kuno, “Lateral Variation of Basalt Magma Types Across Continental Margins and Island Arcs,” Bull. Volcanol. 29, 195–222 (1966).

    Article  Google Scholar 

  24. G. V. Ledneva, J. I. Garver, M. N. Shapiro, et al., “Provenance and Tectonic Setting of Accretionary Wedge Sediments on Northeastern Karaginski Island (Kamchatka, Russian Far East),” Russian J. Earth Sci. 6(2), 1–28 (2004).

    Google Scholar 

  25. H. Martin, “The Mechanisms of Petrogenesis of the Archaean Continental Crust—Comparison with Modern Processes,” Lithos 30, 373–388 (1993).

    Article  Google Scholar 

  26. A. Miyashiro, “Volcanic Rock Series in Island Arc and Active Continental Margin,” Amer. J. Sci. 274, 321–355 (1974).

    Article  Google Scholar 

  27. J. D. Morris and J. G. Ryan, “Subduction Zone Processes and Implications for Changing Composition of the Upper and Lower Mantle,” in Treatise on Geochemistry, Ed. by R. Carlson (Elsevier, Amsterdam, 2003), Vol. 2, pp. 451–470.

    Google Scholar 

  28. A. Pecerillo and S. R. Taylor, “Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamuonu Area, Northern Turkey,” Contrib. Mineral. Petrol. 58, 63–81 (1976).

    Article  Google Scholar 

  29. J. G. Ryan, J. Morris, F. Tera, et al., “Cross-Arc Geochemical Variations in the Kurile Arc as a Function of Slab Depth,” Science 270, 625–627 (1995).

    Article  Google Scholar 

  30. F. J. Ryerson and E. B. Watson, “Rutile Saturation in Magmas: Implications for Ti-Nb-Ta Depletion in Island-Arc Basalts,” Earth Planet. Sci. Lett. 86, 225–239 (1987).

    Article  Google Scholar 

  31. F. G. Sajona, R. C. Maury, M. Pubellier, et al., “Magmatic Source Enrichment by Slab-Derived Melts in a Young Post-Collision Setting, Central Mindanao (Philippines),” Lithos 54, 173–206 (2000).

    Article  Google Scholar 

  32. F. G. Sajona, R. C. Maury, H. Bellon, et al., “Initiation of Subduction and the Generation of Slab Melts in Western and Eastern Mindanao, Philippines,” Geology 21, 1007–1010 (1993).

    Article  Google Scholar 

  33. F. G. Sajona, H. Bellon, R. C. Maury, et al., “Magmatic Response to Abrupt Changes in Tectonic Setting: Pliocene-Quaternary Calc-Alkaline Lavas and Nb-Enriched Basalts of Leyte and Mindanao (Philippines),” Tectonophysics 237, 47–72 (1994).

    Article  Google Scholar 

  34. C. Sen and T. Dunn, “Experimental Modal Metasomatism of a Spinel Lherzolite and the Production of Amphibole-Bearing Peridotite,” Contrib. Mineral. Petrol. 117, 389–406 (1995).

    Google Scholar 

  35. I. E. M. Smith, S. R. Taylor, and R. W. Johnson, “REE-Fractionated Trachytes and Dacites from Papua New Guinea and Their Relationship to Andesite Petrogenesis,” Contrib. Mineral. Petrol. 69, 227–233 (1979).

    Article  Google Scholar 

  36. State Geological Map, Scale 1: 50000, Sheets R-58-102-B, D; R-58-103-A, B, C, D (GUGK, Moscow, 1995) [in Russian].

  37. R. H. Steiger and E. Jäger, “Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology,” Earth Planet. Sci. Lett. 36, 359–362 (1977).

    Article  Google Scholar 

  38. A. J. Stolz, K. P. Jochum, B. Spettel, and A. W. Hoffman, “Fluid- and Melt-Related Enrichment in the Subarc Mantle: Evidence from Nb/Ta Variations in Island Arc Basalts,” Geology 24, 587–590 (1996).

    Article  Google Scholar 

  39. S. S. Sun, and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).

  40. T. V. Tarasenko, S. A. Mel’nikova, and M. Ya. Serova, “Subdivision and Age Substantiation of the Upper Cretaceous and Lower Paleogene Deposits of the Maini-Kakyini Range,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 11, 139–146 (1970).

  41. J. D. Woodhead, S. M. Eggins, and R. W. Johnson, “Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes,” J. Petrol. 39, 1641–1668 (1998).

    Article  Google Scholar 

  42. G.M. Yogodzinski, R. W. Kay, O. N. Volynets, et al., “Magnesian Andesite in the Western Aleutian Komandorsky Region: Implications for Slab Melting and Processes in the Mantle Wedge,” Geol. Soc. Am. Bull. 107, 505–519 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kovalenko.

Additional information

Original Russian Text © D.V. Kovalenko, T.B. Bayanova, 2007, published in Petrologiya, 2007, Vol. 15, No. 6, pp. 645–670.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalenko, D.V., Bayanova, T.B. Sources and evolution of the Cenozoic suprasubduction magmatism of the Olyutorsky tectonic block, southern Koryak highland. Petrology 15, 599–622 (2007). https://doi.org/10.1134/S0869591107060057

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591107060057

Keywords

Navigation