Skip to main content
Log in

Sources of Archean sanukitoids (High-Mg subalkaline granitoids) in the Karelian craton: Sm-Nd and Rb-Sr isotopic-geochemical evidence

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The Sm-Nd systematics of sanukitoids with an age of 2715–2740 Ma in the Western, Eastern, and Central domains of the Karelian craton with various crustal evolutionary histories indicates that the mafic and acid rocks of the sanukitoid series were derived from two contrasting sources: enriched lithospheric mantle and lower crust. The basic sanukitoids of the Western domain were derived from the mantle enriched long before its melting [ɛNd(2715) = −0.48 ± 0.22]. The source of the acid magmas was the young juvenile crust of TTG composition [ɛNd(2715) increases to +1.2]. The mantle source of mafic sanukitoids in the Eastern domain was enriched shortly before melting [ɛNd(2740) = +1.58 ± 0.01], whereas the acid melts came from an ancient crustal source [ɛNd(2740) decreases to −3.0]. For sanukitoids in the Central domain, the time span between the enrichment of the mantle source and its melting was the shortest [ɛNd(2725) = +2.05 ± 0.15], and the contribution of the juvenile TTG crust was insignificant [ɛNd(2725) deceases to +1.7]. The variations in the isotope characteristics of the acid members of the sanukitoid series are consistent with the known age heterogeneity of the crust of the domains. The lateral isotopic-geochemical heterogeneity of the lithospheric mantle source of the sanukitoids is thought to have been related to its two-stage reworking (at 3.2 and 2.8–2.9 Ga) under the effect of TTG granitoids, which are regarded as the melting products of the subducted oceanic crust. The sanukitoids provide information on the geochemical structure of the Archean lithosphere, which is reflected in Archean crust-building processes. The Rb-Sr isotope system of the Neoarchean sanukitoids underwent transformations on the mineralogical scale and within small massifs in the course of at least two Paleoproterozoic tectono-thermal events. A trace of the event at ∼2.1 Ga is left in the Rb-Sr system of monomineralic fractions from a weakly deformed syenite of the sanukitoid series in the Central Domain. Later event (∼1.7 Ga) was recorded in the minerals of the Teloveis sanukitoid massif, which hosts a gold mesothermal deposit in the Western domain. Monomineralic fractions of muscovite and biotite from the wall-rock metasomatites and of plagioclase, microcline, and biotite from metasomatites away from the orebodies yield isochron ages of 1719 ± 60 and 1717 ± 27 Ma. This age of the metasomatic alterations of the Neoarchean sanukitoids is able to explain the broad and unsystematic variations in the Rb-Sr isotope-geochemical characteristics of these rocks. Our data on the Paleoproterozoic age of the mesothermal gold ore mineralization at the Teloveis deposit provide additional lines of evidence for the complex tectonic and metallogenic evolution of the Karelian GGT in the Early Precambrian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Arth, “Behavior of Trace Elements during Magmatic Processes—A Summary of Theoretical Models and their Applications,” U.S. Geol. Surv. J. Res. 4, 41–47 (1976).

    Google Scholar 

  2. E. V. Bibikova, A. Petrova, and S. Claesson, “The Temporal Evolution of Sanukitoids in the Karelian Craton, Baltic Shield: an Ion Microprobe U-Th-Pb Isotopic Study of Zircons,” Lithos 79, 129–145 (2005).

    Article  Google Scholar 

  3. E. V. Bibikova, A. I. Slabunov, T. I. Kirnozova, et al., “U-Pb Geochronology and Major-Element Chemistry of a Diorite-Plagiogranitic Batholith in Northern Karelia,” Geokhimiya, No. 11, 1154–1160 (1997) [Geochem. Int. 35, 1021–1027 (1997)].

  4. E. V. Bibikova, A. V. Samsonov, A. A. Shchipansky, et al., “The Hisovaara Structure in the Northern Karelian Greenstone Belt as a Late Archean Accreted Island Arc: Isotopic Geochronological and Petrological Evidence,” Petrologiya 11, 289–320 (2003) [Petrology 11, 261–290 (2003)].

    Google Scholar 

  5. E. V. Bibikova, A. V. Samsonov, T. I. Kirnozova, and A. Yu. Petrova, “The Archean Geochronology of Western Karelia,” Stratigr. Geol. Korrelyatsiya 13, 3–20 (2005) [Stratigr. Geol. Correlation 13, 459–475 (2005)].

    Google Scholar 

  6. D. J. Brabander and B. J. Giletti, “Strontium Diffusion Kinetics in Amphiboles and Significance to the Thermal History Determination,” Geochim. Cosmochim. Acta 59, 2223–2238 (1995).

    Article  Google Scholar 

  7. V. P. Chekulaev, “Archean “Sanukitoids” on the Baltic Shield,” Dokl. Akad. Nauk 368, 230–235 (1999) [Dokl. Earth Sci. 368, 1137–1139 (1999)].

    Google Scholar 

  8. V. P. Chekulaev, S. B. Lobach-Zhuchenko, N. A. Arestova, et al., “Archean High-Mg Granitoids (Sanukitoids) as Indicators of the Gold Mineralization in Karelia: Geology, Composition, and Spatiotemporal Distribution,” in Proceedings of All-Russian Scientific Conference on Geology, Geochemistry, Geophysics on the Turn of 20th and 21st Centuries, Moscow, Russia, 2002 (Moscow, 2002), Vol. 2, pp. 190–192 [in Russian].

  9. V. P. Chekulaev, S. B. Lobach-Zhuchenko, and L. K. Levskii, “Archean Granites in Karelia as Indicators of the Composition and Age of the Local Continental Crust,” Geokhimiya, No. 8, 805–816 (1997) [Geochem. Int. 35, 704–715 (1997)].

  10. D. J. DePaolo, “Neodymium Isotopes in the Colorado Front Range and Crust-Mantle Evolution in the Proterozoic,” Nature 291, 193–196 (1981).

    Article  Google Scholar 

  11. O. C. Evans and G. N. Hanson, “Late-to Post-Kinematic Archaean Granitoids of the S.W. Superior Province: Derivation Through Direct Mantle Melting,” in Greenstone belts, Ed. by M. J. De Wit and L. D. Ashwal (Oxford Science Publications, London, 1997), pp. 281–295.

    Google Scholar 

  12. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr Isotopic Systematics of River Water Suspended Material: Implications for Crustal Evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  13. J. Halla, “Late Archean High-Mg Granitoids (Sanukitoids) in the Southern Karelian Domain, Eastern Finland: Pb and Nd Isotopic Constraints on Crust-Mantle Interactions,” Lithos 79, 161–178 (2005).

    Article  Google Scholar 

  14. A. W. Hofmann, “Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust and Oceanic Crust,” Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  Google Scholar 

  15. J. Hunen, A. P. Berg, and N. J. Vlaar, “On the Role of Subducting Oceanic Plateaus in the Development of Shallow Flat Subduction,” Tectonophysics 352, 317–333 (2002).

    Article  Google Scholar 

  16. A. Korja, R. Lahtinen, and P. Heikkinen, “A Tectonic Model for Paleoproterozoic Crocodile Structures at Karelian-Svecofennian Boundary—Results from FIRE1 and BABEL2&3,” Geophys. Res. Abstr. 5, 02801 (2003).

    Google Scholar 

  17. A. Kovalenko, J. D. Clemens, and V. Savatenkov, “Petrogenetic Constraints for the Genesis of Archaean Sanukitoid Suites: Geochemistry and Isotopic Evidence from Karelia, Baltic Shield,” Lithos 79, 147–160 (2005).

    Article  Google Scholar 

  18. A. V. Kovalenko and N. G. Rizvanova, “New Geochronological and Isotopic Data on the Granitoid Magmatism of Central Karelia,” in Geology and Mineral Resources of Northwestern and Central Russia (Apatity, 1999), pp. 61–66 [in Russian].

  19. V. N. Kozhevnikov, Archean Greenstone Belts of the Karelian Craton as Accretionary Orogens (Petrozavodsk, 2000) [in Russian].

  20. L. V. Kuleshevich, “Felsic Magmatism and Gold Mineralization of the Kostomuksha Structure,” Geology and Minerals of Karelia, No. 5, 59–72 (2002).

  21. V. S. Kulikov, A. K. Simon, V. V. Kulikova, et al., “Magmatic Evolution of the Vodlozero Block of the Karelian Granite-Greenstone Terrane in the Archean,” in Precambrian Geology and Geochronology of the East European Platform (Nauka, Leningrad, 1990), pp. 92–100 [in Russian].

    Google Scholar 

  22. O. A. Levchenkov, S. B. Lobach-Zhuchenko, and S. A. Sergeev, “Geochronology of the Karelian Granite-Greenstone Terrane,” in Isotopic Geochronology of the Precambrian (Nauka, Leningrad, 1989), pp. 63–72 [in Russian].

    Google Scholar 

  23. S. B. Lobach-Zhuchenko, V. P. Chekulaev, N. A. Arestova, et al., “High-Mg Granitoids (Sanukitoids) of the Baltic Shield: Geological Setting, Geochemical Characteristics and Implications for the Origin of Mantle-Derived Melts,” Geophys. Res. Abstr. 5, 03744 (2003).

    Google Scholar 

  24. S. B. Lobach-Zhuchenko, V. P. Chekulaev, V. V. Ivanikov, et al., “Late Archean High-Mg and Subalkaline Granitoids and Lamprophyres as an Indicator of Gold Mineralization in Karelia (Baltic Shield), Russia,” in Ore-Bearing Granites of Russia and Adjacent Countries, Ed. by A. Kremenetsky, B. Lehmann, and R. Seltmann (IMGRE, Moscow, 2000), pp. 193–211.

    Google Scholar 

  25. S. B. Lobach-Zhuchenko, V. P. Chekulaev, S. A. Sergeev, et al., “Archaean Rocks from Southeastern Karelia (Karelian Granite-Greenstone Terrain),” Precambrian Res. 62, 375–397 (1993).

    Article  Google Scholar 

  26. S. B. Lobach-Zhuchenko, H. R. Rollinson, V. P. Chekulaev, et al., “The Archaean Sanukitoid Series of the Baltic Shield: Geological Setting, Geochemical Characteristics and Implications for Their Origin,” Lithos 79, 107–128 (2005).

    Article  Google Scholar 

  27. S. B. Lobach-Zhuchenko, A. V. Kovalenko, V. P. Chekulaev, et al., “Karelian Sanukitoids as a Possible Indicator of Geodynamic Setting in the Late Archean of the Baltic Shield,” in Proceedings of the Russian Conference on the Problems of Precambrian Geology and Geodynamics. Geology and Geodynamics of the Archean, St. Petersburg, Russia, 2005 (IGGD RAN, St. Petersburg, 2005), pp. 236–242.

    Google Scholar 

  28. S. B. Lobach-Zhuchenko, E. V. Bibikova, O. A. Levchenkov, and Yu. D. Pushkarev, “Geochronology of the Eastern Baltic Shield,” in Methods of Isotopic Geochronology and Geochronological Scale (Nauka, Moscow, 1986), pp. 77–134 [in Russian].

    Google Scholar 

  29. S. B. Lobach-Zhuchenko, V. P. Chekulaev, N. A. Arestova, et al., “Archean Terranes in Karelia: Geological and Isotopic-Geochemical Evidence,” Geotektonika, No. 6, 26–42 (2000) [Geotectonics 34, 452–466 (2000)].

  30. H. Martin, “Adakitic Magmas: Modern Analogues of Archean Granitoids,” Lithos 46, 411–429 (1999).

    Article  Google Scholar 

  31. H. E. O’Brien, P. A. Nurmi, and J. A. Karhu, “Oxygen, Hydrogen and Strontium Isotopic Compositions of Gold Mineralization in the Late Archean Hattu Schist Belt, Ilomantsi, Eastern Finland,” Geol. Surv. Finl. Spec. Pap. 17, 291–306 (1993).

    Google Scholar 

  32. G. V. Ovchinnikova, V. A. Matrenichev, O. A. Levchenkov, et al., “U-Pb and Pb-Pb Isotopic Study of Felsic Volcanic Rocks of the Khautavaara Greenstone Structure, Central Karelia,” Petrologiya 2, 266–281 (1994).

    Google Scholar 

  33. I. S. Puchtel, A. W. Hofmann, K. Mezger, et al., “Oceanic Plateau Model for Continental Crustal Growth in the Archaean: A Case Study from the Kostomuksha Greenstone Belt, NW Baltic Shield,” Earth Planet. Sci. Lett. 155, 57–74 (1998).

    Article  Google Scholar 

  34. I. S. Puchtel, A. W. Hofmann, Yu. V. Amelin, et al., “Combined Mantle Plume-Island Arc Model for the Formation of the 2.9 Ga Sumozero-Kenozero Greenstone Belt, SE Baltic Shield: Isotope and Trace Element Constraints,” Geochim. Cosmochim. Acta 63, 3579–3595 (1999).

    Article  Google Scholar 

  35. R. P. Rapp and E. B. Watson, “Dehydration Melting of Metabasalt at 8–32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling,” J. Petrol. 36, 891–931 (1995).

    Google Scholar 

  36. H. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation (Longman, London, 1993).

    Google Scholar 

  37. H. R. Rollinson, “Magma Mingling in the Panozero Sanukitoid Intrusion, Baltic Shield,” Geophys. Res. Abstr. 5, 03065 (2003).

    Google Scholar 

  38. V. J. M. Salters and A. Stracke, “Composition of the Depleted Mantle,” Geochem. Geophys. Geosyst. J. Earth Sci 5, No. 1029/2003GC000597 (2004)

  39. A. V. Samsonov, E. V. Bibikova, M. M. Bogina, et al., “The Relationship between Adakitic and Calc-Alkaline Volcanic Rocks and TTGs in the Karelian Greenstone Belts,” Lithos 79, 83–106 (2005).

    Article  Google Scholar 

  40. A. V. Samsonov, E. V. Bibikova, Yu. O. Larionova, et al., “Magnesian Granitoids (Sanukitoids) of the Kostomuksha Area, Western Karelia: Petrology, Geochronology, and Tectonic Environment of Formation,” Petrologiya 12(5), 495–529 (2004) [Petrology 12, 437–468 (2004)].

    Google Scholar 

  41. A. V. Samsonov, I. S. Puchtel, A. A. Shchipansky, et al., “Isotope-Geochemical Variations between Felsic Volcanic Rocks from Karelian Greenstone Belts and Some Tectonic Implications,” in Proceedings of 9th European Union of Geosciences Conference, Strasbourg, France, 1997 (Strasbourg, 1997), p. 363.

  42. A. V. Samsonov, R. G. Berzin, N. G. Zamozhnyaya, et al., “Formation of the Early Precambrian Crust of the Northwestern Karelia, Baltic Shield: Results of Geological, Petrological, and Deep-Seated Seismic Studies (Profile 4V)” in Deep-Seated Structure of the Earth Crust along Profile 4V (Kem-Kalevala), Ed. by R. G. Berzin (Petrozavodsk, 2001), pp. 109–143 [in Russian].

  43. K. N. Shatagin and V. N. Volkov, “Rb-Sr System in Hydrothermally Altered Acid Volcanics: A Case Study,” Geokhimiya, No. 2, 158–165 (1998) [Geochem. Int. 36, 117–127 (1998)].

  44. A. A. Shchipansky, A. V. Samsonov, M. M. Bogina, et al., “High-Mg, Low-Ti Quartz Amphibolites of the Khizovaara Greenstone Belt, Northern Karelia: Archean Metamorphosed Boninites?,” Dokl. Akad. Nauk 365(6), 817–820 (1999) [Dokl. Earth Sci. 365, 422–425 (1999)].

    Google Scholar 

  45. A. A. Shchipanskii, I. I. Babarina, K. A. Krylov, et al., “The Oldest Ophiolites: The Late Archean Suprasubduction Zone Complex of the Iringora Structure, North Karelian Greenstone Belt,” Dokl. Akad. Nauk 377(3), 376–380 (2001) [Dokl. Earth Sci. 377, 283–287 (2001)].

    Google Scholar 

  46. A. A. Shchipansky, A. V. Samsonov, E. V. Bibikova, et al., “2.8 Ga Boninite-Hosting Partial Suprasubduction Zone Ophiolite Sequences from the North Karelian Greenstone Belt, NE Baltic Shield, Russia,” in Precambrian Ophiolites and Related Rocks, Ed. by T. Kusky (Elsevier, Amsterdam, 2004), pp. 424–486.

    Google Scholar 

  47. S. B. Shirey and G. N. Hanson, “Mantle-Derived Archaen Monzodiorites and Trachyandesites,” Nature 310, 222–224 (1984).

    Article  Google Scholar 

  48. R. H. Smithies and D. C. Champion, “The Archaean High-Mg Diorite Suite: Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth,” J. Petrol. 41, 1653–1671 (2000).

    Article  Google Scholar 

  49. R. A. Stern and G. N. Hanson, “Archean High-Mg Granodiorite: A Derivative of Light Rare Earth Elementenriched Monzodiorite of Mantle Origin,” J. Petrol. 32, 201–238 (1991).

    Google Scholar 

  50. R. A. Stern, G. N. Hanson, and S. B. Shirey, “Petrogenesis of Mantle-Derived, LILE-Enriched Archean Monzodiorites and Trachyandesites (Sanukitoids) in Southwestern Superior Province,” Canad. J. Earth Sci. 26, 1688–1712 (1989).

    Google Scholar 

  51. R. Stevenson, P. Henry, and C. Gariepy, “Assimilation-Fractional Crystallization Origin of Archean Sanukitoid Suites: Western Superior Province, Canada,” Precambrian Res. 96, 83–99 (1999).

    Article  Google Scholar 

  52. Y. Tatsumi, “Origin of High-Magnesian Andesites in the Setouchi Volcanic Belt, Southwest Japan. II. Melting Experiments at High Pressure,” Earth Planet. Sci. Lett. 60, 305–317 (1982).

    Article  Google Scholar 

  53. Types of Magmas and their Sources in the Earth Evolution. Part 1. Magmatism and Geodynamics—the Main Factors of the Earth’s Evolution, Ed. by O. A. Bogatikov and V. I. Kovalenko (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  54. N. M. Vielreicher, J. R. Ridley, and D. I. Groves, “Marymia: An Archean, Amphibolite Facies-Hosted, Orogenic Lode-Gold Deposit Overprinted by Paleoproterozoic Orogenesis and Base Metal Mineralization, Western Australia,” Miner. Deposita 37, 737–764 (2002).

    Article  Google Scholar 

  55. P. J. Wyllie, W.-L. Huang, C. R. Stern, and S. Maaloe, “Granitic Magmas: Possible and Impossible Sources, Water Contents, and Crystallization Sequences,” Can. J. Earth Sci. 13, 1007–1019 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Samsonov.

Additional information

Original Russian Text © Yu.O. Larionova, A.V. Samsonov, K.N. Shatagin, 2007, published in Petrologiya, 2007, Vol. 15, No. 6, pp. 571–593.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larionova, Y.O., Samsonov, A.V. & Shatagin, K.N. Sources of Archean sanukitoids (High-Mg subalkaline granitoids) in the Karelian craton: Sm-Nd and Rb-Sr isotopic-geochemical evidence. Petrology 15, 530–550 (2007). https://doi.org/10.1134/S0869591107060021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591107060021

Keywords

Navigation