Advertisement

Petrology

, Volume 15, Issue 4, pp 386–407 | Cite as

Chemical composition of lunar meteorites and the lunar crust

  • S. I. Demidova
  • M. A. Nazarov
  • C. A. Lorenz
  • G. Kurat
  • F. Brandstätter
  • Th. Ntaflos
Article

Abstract

The paper presents the first analyses of major and trace elements in 19 lunar meteorites newly found in Oman. These and literature data were used to assay the composition of highland, mare, and transitional (highland-mare interface) regions of the lunar surface. The databank used in the research comprises data on 44 meteorites weighing 11 kg in total, which likely represent 26 individual falls. Our data demonstrate that the lunar highland crust should be richer in Ca and Al but poorer in mafic and incompatible elements than it was thought based on studying lunar samples and the first orbital data. The Ir concentration in the highland crust and the analysis of lunar crater population suggest that most lunar impactites were formed by a single major impact event, which predetermined the geochemical characteristics of these rocks. Lunar mare regions should be dominated by low-Ti basalts, which are, however, enriched in LREEs compared to those sampled by lunar missions. The typical material of mare-highland interface zones can contain KREEP and magnesian VLT basalts. The composition of the lunar highland crust deduced from the chemistry of lunar meteorites does not contradict the model of the lunar magma ocean, but the average composition of lunar mare meteorites is inconsistent with this concept and suggests assimilation of KREEP material by basaltic magmas. The newly obtained evaluations of the composition of the highland crust confirm that the Moon can be enriched in refractory elements and depleted in volatile and siderophile elements.

Keywords

Breccia Lunar Planet Lunar Rock Mare Basalt Lunar Crust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Alekseev, “Estimating Errors in the Parameters of the Best-Fit Straight Line Drawn through Data Points in Geochemical Studies,” Geokhimiya, No. 8, 909–912 (2000) [Geochem. Int. 38, 827–830 (2000)].Google Scholar
  2. 2.
    M. Anand, L. A. Taylor, C. Neal, et al., “Petrology and Geochemistry of LAP 02 205: A New Low-Ti Mare-Basalt Meteorite,” Lunar Planet. Sci. 35, 1626 (2004).Google Scholar
  3. 3.
    M. Anand, L. A. Taylor, K. C. Misra, et al., “KREEPy Lunar Meteorite Dhofar 287A: A New Lunar Mare Basalt,” Meteorit. Planet. Sci. 38, 485–499 (2003).Google Scholar
  4. 4.
    T. Arai and P. H. Warren, “Lunar Meteorite Queen Alexandra Range 94281: Glass Compositions and Other Evidence for Launch Pairing with Yamato 793274,” Meteorit. Planet. Sci. 34, 209–234 (1999).Google Scholar
  5. 5.
    T. Arai, M. Otsuki, T. Ishii, et al., “Mineralogy of Yamato 983885 Lunar Polymict Breccia with Alkali-Rich and Mg-Rich Rocks,” Lunar Planet. Sci. 35, 2155 (2004).Google Scholar
  6. 6.
    T. Arai, P. H. Warren, and G. W. Kallemeyn, “Lunar Meteorite QUE 94281: A Possible Pair of Y793274 and/or EET87521,” Lunar Planet. Sci. 27, 33–34 (1996).Google Scholar
  7. 7.
    A. A. Ariskin, M. I. Petaev, A. A. Borisov, and G. S. Barmina, “METEOMOD: A Numerical Model for the Calculation of Melting-Crystallization Relationships in Meteoritic Igneous Systems,” Meteorit. Planet. Sci. 32, 123–133 (1997).Google Scholar
  8. 8.
    A. T. Bazilevskii, B. A. Ivanov, K. P. Florenskii, et al., Impact Craters on the Moon and Planets (Nauka, Moscow, 1983) [in Russian].Google Scholar
  9. 9.
    A. Bischoff, D. Weber, R. N. Clayton, et al., “Petrology, Chemistry, and Isotopic Compositions of the Lunar Highland Regolith Breccia Dar al Gani 262,” Meteorit. Planet. Sci. 33, 1243–1257 (1998).Google Scholar
  10. 10.
    A. Bischoff, H. Palme, H. W. Weber, et al., “Petrography, Shock History, Chemical Composition and Noble Gas Content of the Lunar Meteorites Yamato-82192 and — 82193,” 11th Symp. Antarct. Meteorit. Mem. Natl. Inst. Polar. Res., No. 46, 21–42 (1987).Google Scholar
  11. 11.
    F. Chayes, Petrographic Modal Analysis: An Elementary Statistical Appraisal (Wiley and Sons, New York, 1956; Inostrannaya Literatura, Moscow, 1963).Google Scholar
  12. 12.
    H. Chenet, J. Gagnepain-Beyneix, and P. Lognonne, “A New Geophysical View of the Moon,” Lunar Planet. Sci. 33, 1684 (2002).Google Scholar
  13. 13.
    J. S. Delaney, “Lunar Basalt Breccia Identified Among Antarctic Meteorites,” Nature 342, 889–890 (1989).CrossRefGoogle Scholar
  14. 14.
    S. I. Demidova, M. A. Nazarov, G. Kurat, et al., “New Lunar Meteorites from Oman: Dhofar 925, 960 and 961,” Lunar Planet. Sci. 36, 1607 (2005).Google Scholar
  15. 15.
    S. I. Demidova, M. A. Nazarov, M. Anand, and L. A. Taylor, “A Lunar Regolith Breccia Dhofar 287B: A Record of Lunar Volcanism,” Meteorit. Planet. Sci. 38, 501–514 (2003a).Google Scholar
  16. 16.
    S. I. Demidova, M. A. Nazarov, G. Kurat, et al., “Lunar Meteorite Dhofar 310: A Polymict Breccia with Deep-Seated Lunar Crustal Material,” Meteorit. Planet. Sci. 38, A30 (2003b).Google Scholar
  17. 17.
    S. I. Demidova, M. A. Nazarov, and L. A. Taylor, “Dhofar 304, 305, 306, and 307: New Lunar Highland Meteorites,” Lunar Planet. Sci. 34, 1285 (2003c).Google Scholar
  18. 18.
    G. Dreibus, B. Spettel, F. Wlotzka, et al., “Chemistry, Petrology, and Noble Gases of Basaltic Lunar Meteorite QUE 94281,” Meteorit. Planet. Sci. 31, A38 (1996).Google Scholar
  19. 19.
    O. Eugster and E. Polnau, “Lunar Meteorite QUE94269—Pairing with QUE93069 Confirmed. Lunar Meteorite QUE 94281—Similarity with Y-793274,” Lunar Planet. Sci. 27, 343–344 (1996).Google Scholar
  20. 20.
    T. J. Fagan, G. J. Taylor, K. Keil, et al., “Northwest Africa 032: Product of Lunar Volcanism,” Meteorit. Planet. Sci. 37, 371–394 (2002).Google Scholar
  21. 21.
    T. J. Fagan, G. J. Taylor, K. Keil, et al., “Northwest Africa 773: Lunar Origin and Iron-Enrichment Trend,” Meteorit. Planet. Sci. 38, 529–554 (2003).Google Scholar
  22. 22.
    T. A. Giguere, G. J. Taylor, B. R. Hawke, and P. G. Lucey, “The Titanium Contents of Lunar Mare Basalts,” Meteorit. Planet. Sci. 35, 193–201 (2000).Google Scholar
  23. 23.
    J. J. Gillis, B. L. Jolliff, and R. L. Korotev, “Lunar Surface Geochemistry: Global Concentrations of Th, K, and FeO as Derived from Lunar Prospector and Clementine Data,” Geochim. Cosmochim. Acta 68, 3791–3805 (2004).CrossRefGoogle Scholar
  24. 24.
    A. Greshake, R. T. Schmitt, D. Stöffler, et al., “Dhofar 081: A New Lunar Highland Meteorite,” Meteorit. Planet. Sci. 36, 459–470 (2001).Google Scholar
  25. 25.
    J. W. Head and L. Wilson, “Lunar Mare Volcanism: Stratigraphy, Eruption Conditions, and the Evolution of Secondary Crust,” Geochim. Cosmochim. Acta 56, 2155–2175 (1992).CrossRefGoogle Scholar
  26. 26.
    D. H. Hill and W. V. Boynton, “Chemistry of the Calcalong Creek Lunar Meteorite and Its Relationship to Lunar Terranes,” Meteorit. Planet. Sci. 38, 595–626 (2003).Google Scholar
  27. 27.
    D. H. Hill, W. V. Boynton, and R. A. Haag, “A Lunar Meteorite Found Outside the Antarctic,” Nature 352, 614–617 (1991).CrossRefGoogle Scholar
  28. 28.
    B. L. Jolliff, R. L. Korotev, R. A. Zeigler, and C. Floss, “Northwest Africa 773: Lunar Mare Breccia with a Shallow-Formed Olivine-Cumulate Component, Very-Low-Ti (VLT) Heritage, and a KREEP Connection,” Geochim. Cosmochim. Acta 67, 4857–4879 (2003).CrossRefGoogle Scholar
  29. 29.
    B. L. Jolliff, R. L. Korotev, and K. M. Rockow, “Geochemistry and Petrology of Lunar Meteorite Queen Alexandra Range 94281, a Mixed Mare and Highland Regolith Breccia, with Special Emphasis on Very-Low-Titanium Mafic Components,” Meteorit. Planet. Sci. 33, 581–601 (1998).Google Scholar
  30. 30.
    B. L. Jolliff, R. L. Korotev, and L. A. Haskin, “A Ferroan Region of the Lunar Highland as Recorded in Meteorites MAC88104 and MAC88105,” Geochim. Cosmochim. Acta 55, 3051–3071 (1991).CrossRefGoogle Scholar
  31. 31.
    H. Kaiden and H. Kojima, “Yamato 983885: A Second Lunar Meteorite from the Yamato 98 Collection,” Proc. NIPR Symp. Antarct. Meteorit., No. 27, 49–51 (2002).Google Scholar
  32. 32.
    C. Koeberl, G. Kurat, and F. Brandstätter, “Gabbroic Lunar Mare Meteorites Asuka-881757 (Asuka-31) and Yamato-793169: Geochemical and Mineralogical Study,” Proc. NIPR Symp. Antarct. Meteorit., No. 6, 14–34 (1993).Google Scholar
  33. 33.
    C. Koeberl, G. Kurat, and F. Brandstätter, “Lunar Meteorite Yamato-793274: Mixture of Mare and Highland Components, and Barringerite from the Moon,” Proc. NIPR Symp. Antarct. Meteorit., No. 4, 33–55 (1991).Google Scholar
  34. 34.
    C. Koeberl, G. Kurat, and F. Brandstätter, “Lunar Meteorite Yamato-86032: Mineralogical, Petrological, and Geochemical Studies,” Proc. NIPR Symp. Antarct. Meteorit., No. 3, 3–18 (1990).Google Scholar
  35. 35.
    C. Koeberl, G. Kurat, and F. Brandstätter, “Mineralogy and Geochemistry of Lunar Meteorite Queen Alexandra Range 93069,” Meteorit. Planet. Sci. 31, 897–908 (1996).Google Scholar
  36. 36.
    R. L. Korotev, “On the Relationship Between the Apollo 16 Ancient Regolith Breccias and Feldspathic Fragmental Breccias, and the Composition of the Prebasin Crust in the Central Highlands of the Moon,” Meteorit. Planet. Sci. 31, 403–412 (1996).Google Scholar
  37. 37.
    R. L. Korotev, “Some Things We Can Infer About the Moon from the Composition of the Apollo 16 Regolith,” Meteorit. Planet. Sci. 32, 447–478 (1997).Google Scholar
  38. 38.
    R. L. Korotev, B. L. Jolliff, R. A. Zeigler, et al., “Feldspathic Lunar Meteorites and Their Implications for Compositional Remote Sensing of the Lunar Surface and the Composition of the Lunar Crust,” Geochim. Cosmochim. Acta 67, 4895–4923 (2003).CrossRefGoogle Scholar
  39. 39.
    R. L. Korotev, B. L. Jolliff, and K. M. Rockow, “Lunar Meteorite Queen Alexandra Range 93069 and the Iron Concentration of the Lunar Highland Surface,” Meteorit. Planet. Sci. 31, 909–924 (1996).Google Scholar
  40. 40.
    R. L. Korotev, L. A. Haskin, and M. M. Lindstrom, “A Synthesis of Lunar Highlands Compositional Data,” Proc. Lunar Planet. Sci. Conf. 11, 395–429 (1980).Google Scholar
  41. 41.
    R. L. Korotev, R. A. Zeigler, and B. L. Jolliff, “Compositional Constraints on the Launch Pairing of LAP 02205 and PCA 02007 with Other Lunar Meteorites,” Lunar Planet. Sci. 35, 1416 (2004).Google Scholar
  42. 42.
    F. T. Kyte and J. T. Wasson, “Accretion Rate of Extrater-restrial Matter: Iridium Deposited 33 to 67 Million Years Ago,” Science 232, 1225–1229 (1986).CrossRefGoogle Scholar
  43. 43.
    M. M. Lindstrom, D. J. Lindstrom, R. L. Korotev, and L. A. Haskin, “Lunar Meteorites Yamato 791197 and ALHA81005: The Same Yet Different,” Proc. NIPR Symp. Antarct. Meteorit. 10, 119–121 (1985).Google Scholar
  44. 44.
    M. M. Lindstrom, D. W. Mittlefehldt, R. V. Morris, et al., “QUE93069, a More Mature Regolith Breccia for the Apollo 25th Anniversary,” Lunar Planet. Sci. 26, 849–850 (1995).Google Scholar
  45. 45.
    M. M. Lindstrom, D. W. Mittlefehldt, R. V. Morris, and R. R. Martinez, “QUE 94281, a Glassy Basalt-Rich Lunar Meteorite Similar To Y-793274,” Lunar Planet. Sci. 27, 761–762 (1996).Google Scholar
  46. 46.
    M. M. Lindstrom, D. W. Mittlefehldt, and R. R. Martinez, “Geochemistry of Asuka-31: Comparison to Basaltic Lunar Meteorites and Mare Basalts,” in Proceedings of 16th NIPR Symposium on Antarctic Meteorites, 102–105 (1991a).Google Scholar
  47. 47.
    M. M. Lindstrom, D. W. Mittlefehldt, R. R. Martinez, et al., “Geochemistry of Yamato-82192,-86032 and-793274 Lunar Meteorites,” Proc. of 16th NIPR Symposium on Antarctic Meteorites, No. 4, 12–32 (1991b).Google Scholar
  48. 48.
    M. M. Lindstrom, R. R. Martinez, and D. W. Mittlefehldt, “Geochemistry of Lunar Meteorites MAC88104 and MAC88105,” Lunar Planet. Sci. 21, 704–705 (1990).Google Scholar
  49. 49.
    S. Lorenzetti, O. Eugster, E. Gnos, et al., “Cosmic Ray Exposure History of the New Omani Lunar Meteorite Sayh al Uhaymir 169,” Meteorit. Planet. Sci. 38, A26 (2003).Google Scholar
  50. 50.
    H. J. Melosh, Impact Cratering: A Geologic Process (Oxford Univ. Press, Oxford, 1989).Google Scholar
  51. 51.
    M. A. Nazarov, D. D. Badyukov, K. A. Lorents, and S. I. Demidova, “The Flux of Lunar Meteorites onto the Earth,” Astron. Vestn. 37(6), 1–10 (2003a) [Solar. Syst. Res. 38, 49–58 (2003a)].Google Scholar
  52. 52.
    M. A. Nazarov, S. I. Demidova, A. Patchen, and L. A. Taylor, “Dhofar 301, 302 and 303: Three New Lunar Highland Meteorites from Oman,” Lunar Planet. Sci. 33, 1293 (2002).Google Scholar
  53. 53.
    M. A. Nazarov, S. I. Demidova, and L. A. Taylor, “Trace Element Chemistry of Lunar Highland Meteorites from Oman,” Lunar Planet. Sci. 34, 1636 (2003b).Google Scholar
  54. 54.
    M. A. Nazarov, S. I. Demidova, A. Patchen, and L. A. Taylor, “Dhofar 311, 730, and 731: New Lunar Meteorites from Oman,” Lunar Planet. Sci. 35, 1233 (2004).Google Scholar
  55. 55.
    C. R. Neal, L. A. Taylor, and M. M. Lindstrom, “Apollo 14 Mare Basalt Petrogenesis—Assimilation of KREEP-Like Components by a Fractionating Magma,” Lunar Planet. Sci. Conf. 18, 139–153 (1988).Google Scholar
  56. 56.
    K. Nishiizumi, M. W. Caffee, A. J. T. Jull, et al., “Exposure History of Lunar Meteorites Queen Alexandra Range 93069 and 94269,” Meteorit. Planet. Sci. 31, 893–896 (1996).Google Scholar
  57. 57.
    H. Palme, B. Spettel, G. Weckwerth, and H. Wanke, “Antarctic Meteorite ALHA81005, a Piece from the Ancient Lunar Crust,” Geophys. Rev. Lett. 10, 817–820 (1983).Google Scholar
  58. 58.
    H. Palme, B. Spettel, K. F. Jochum, et al., “Lunar Highland Meteorites and the Composition of the Lunar Crust,” Geochim. Cosmochim. Acta 55, 3105–3123 (1991).CrossRefGoogle Scholar
  59. 59.
    M. Prinz, E. Dowty, K. Keil, et al., “Mineralogy, Petrology, and Chemistry of Lithic Fragments from Luna 20 Fines: Origin of the Cumulate ANT Suite and its Relationship to High-Alumina and Mare Basalts,” (Geochim. Cosmochim. Acta 37 (1973); Nauka, Moscow, 1979), pp. 979–1006 [in Russian].CrossRefGoogle Scholar
  60. 60.
    J. M. Rhodes and N. J. Hubbard, “Chemistry, Classification, and Petrogenesis of Apollo 15 Mare Basalts,” Proc. 4th Lunar Sci. Conf., 1127–1148 (1973).Google Scholar
  61. 61.
    A. E. Ringwood and S. E. Kesson, “A Dynamic Model for Mare Basalt Petrogenesis,” Lunar. Sci. Conf. 7, 1697–1722 (1976).Google Scholar
  62. 62.
    A. E. Ringwood, “Basaltic Magmatism and the Bulk Composition of the Moon,” The Moon 16, 389–423 (1977).CrossRefGoogle Scholar
  63. 63.
    S. S. Russell, J. Zipfel, L. Folco, et al., “The Meteoritical Bulletin, No. 87,” Meteorit. Planet. Sci. 38, A189–A248 (2003).Google Scholar
  64. 64.
    G. Ryder, “The Chemical Components of Highland Breccias,” Proc. 10th Lunar Planet. Sci. Conf., 561–581 (1979).Google Scholar
  65. 65.
    A. S. Semenova, M. A. Nazarov, N. N. Kononkova, et al., “Mineral Chemistry of Lunar Meteorite Dar al Gani 400,” Lunar Planet. Sci. 31, 1252 (2000)Google Scholar
  66. 66.
    A. S. Semenova, M. A. Nazarov, and E. V. Guseva, “Lunar Meteorite MAC 88105: Petrology of Igneous Rock Clasts,” Lunar Planet. Sci. 23, 1265–1266 (1992).Google Scholar
  67. 67.
    A. S. Semenova, M. A. Nazarov, and N. N. Kononkova, “Petrology of Lunar Meteorites MAC 88105 and EET 87521,” Petrologiya 1(6), 624–633 (1993).Google Scholar
  68. 68.
    Yu. A. Shukolyukov, M. A. Nazarov, and U. Ott, “Noble Gases in New Lunar Meteorites from Oman: Irradiation History, Trapped Gases, and Cosmic-Ray Exposure and K-Ar Ages,” Geokhimiya, No. 11, 1139–1156 (2004) [Geochem. Int. 42, 1001–1017 (2004)].Google Scholar
  69. 69.
    B. Spettel, G. Dreibus, A. Burghele, et al., “Chemistry, Petrology, and Noble Gases of Lunar Highland Meteorite Queen Alexandra Range 93069,” Meteoritics 30, 581–582 (1995).Google Scholar
  70. 70.
    D. Stöffler, A. Bischoff, R. Borchardt, et al., “Composition and Evolution of the Lunar Crust in the Descartes Highlands, Apollo 16,” Proc. 15th Lunar Planet. Sci. Conf., C449–C506 (1985).Google Scholar
  71. 71.
    H. Takeda, H. Mori, and T. Tagai, “Mineralogy of Antarctic Lunar Meteorites and Differentiated Products of the Lunar Crust,” Proc. 10th NIPR Symp. Antarct. Meteorit. Mem. Natl. Inst. Polar Res., No. 41, 45–57 (1986).Google Scholar
  72. 72.
    S. R. Taylor and A. E. Bence, “Evolution of the Lunar Highland Crust,” Lunar Sci. Conf. 6, 1121–1141 (1975).Google Scholar
  73. 73.
    S. R. Taylor and P. Jakes, “The Geochemical Evolution of the Moon,” Proc. 5th Lunar Sci. Conf., 1287–1305 (1974).Google Scholar
  74. 74.
    S. R. Taylor, Planetary Science: A Lunar Perspective (Lunar and Planetary Inst., Houston, 1982).Google Scholar
  75. 75.
    L. A. Taylor, M. A. Nazarov, B. A. Cohen, et al., “Bulk Chemistry and Oxygen Isotopic Compositions of Lunar Meteorites Dhofar 025 and Dhofar 026,” Lumar Planet. Sci. 32, 1985 (2001).Google Scholar
  76. 76.
    L. A. Taylor, M. Anand, C. Neal, et al., “Lunar Meteorite PCA 02007: A Feldspathic Regolith Breccia with Mixed Mare/Highland Components,” Lunar Planet. Sci. 35, 1755 (2004).Google Scholar
  77. 77.
    C. Thalmann, O. Eugster, G. F. Herzog, et al., “History of Lunar Meteorites Queen Alexandra Range 93069, Asuka 881757, and Yamato 793169 Based on Noble Gas Isotopic Abundances, Radionuclide Concentrations, and Chemical Composition,” Meteorit. Planet. Sci. 31, 857–868 (1996).Google Scholar
  78. 78.
    A. L. Turkevich, “The Average Chemical Composition of the Lunar Surface,” Lunar Sci. Conf. 4, 1159–1168 (1973).Google Scholar
  79. 79.
    D. T. Vaniman and J. J. Papike, “Lunar Highland Melt Rocks: Chemistry, Petrology and Silicate Mineralogy,” in Proc. Conf. Lunar Highland Crust (Pergamon Press, New York-Oxford, 1980), pp. 271–337.Google Scholar
  80. 80.
    D. Walker, “Lunar and Terrestrial Crust Formation,” Proc. 14th Lunar Planet. Sci. Conf., B17–B25 (1983).Google Scholar
  81. 81.
    H. Wänke, H. Baddenhausen, K. Blum, et al., “On the Chemistry of Lunar Samples and Achondrites. Primary Matter in the Lunar Highlands: A Re-Evaluation,” Lunar Sci. Conf. 8, 2191–2213 (1977).Google Scholar
  82. 82.
    P. H. Warren and G. W. Kallemeyn, “Elephant Moraine 87521: The First Lunar Meteorite Composed of Predominantly Mare Material,” Geochim. Cosmochim. Acta 53, 3323–3300 (1989).CrossRefGoogle Scholar
  83. 83.
    P. H. Warren and G. W. Kallemeyn, “Geochemical Investigation of Five Lunar Meteorites: Implications for the Composition, Origin and Evolution of the Lunar Crust,” Proc. NIPR Symp. Antarct. Meteorit., No. 4, 91–117 (1991).Google Scholar
  84. 84.
    P. H. Warren and G. W. Kallemeyn, “Geochemical Investigations of Two Lunar Mare Meteorites: Yamato-793169 and Asuka-881757,” Proc. NIPR Symp. Antarct. Meteorit, No. 6, 35–57 (1993).Google Scholar
  85. 85.
    P. H. Warren and G. W. Kallemeyn, “Geochemistry of Lunar Meteorite Yamato-82192: Comparison with Yamato-791197, ALHA81005, and Other Lunar Samples,” Proc. 11th Symp. Antarct. Meteorites. Mem. Natl. Inst. Polar. Res., No. 46, 3–20 (1987).Google Scholar
  86. 86.
    P. H. Warren and J. C. Bridges, “Lunar Meteorite Yamato-983885: A Relatively KREEPy Regolith Breccia Not Paired with Y-791197,” Meteorit. Planet. Sci. 39, 5095 (2004).CrossRefGoogle Scholar
  87. 87.
    P. H. Warren and J. T. Wasson, “The Compositional-Petrographic Search for Pristine Nonmare Rocks: Third Foray,” Lunar. Planet. Sci. Conf. 10, 583–610 (1979).Google Scholar
  88. 88.
    P. H. Warren and J. T. Wasson, “Early Lunar Petrogenesis, Oceanic and Extraoceanic,” in Proc. Conf. Lunar Highland Crust (Pergamon Press, New York-Oxford, 1980), pp. 81–99.Google Scholar
  89. 89.
    P. H. Warren and T. Arai, “Mare Components in Mare-Highland Lunar Meteorite Regolith Breccias: Implications Vis-A-Vis Source-Crater Pairing,” Lunar Planet. Sci. 28, 1499–1500 (1997).Google Scholar
  90. 90.
    P. H. Warren, “Lunar and Martian Meteorite Delivery Services,” Icarus 111, 338–363 (1994).CrossRefGoogle Scholar
  91. 91.
    P. H. Warren, L. A. Taylor, G. Kallemeyn, et al., “Bulk-Compositional Study of Three Lunar Meteorites: Enigmatic Siderophile Element Results for Dhofar 026,” Lunar Planet. Sci. 32, 2197 (2001).Google Scholar
  92. 92.
    M. A. Wieczorek, “The Thickness of the Lunar Crust: How Low Can You Go?,” Lunar Planet. Sci. 34, 1330 (2003).Google Scholar
  93. 93.
    K. Yanai and H. Kojima, “Varieties of Lunar Meteorites Recovered from Antarctica,” Proc. NIPR Antarct. Meteorit, No. 4, 70–90 (1991).Google Scholar
  94. 94.
    K. Yanai, “Asuka-31: Gabbroic Cumulate Originated from Lunar Mare Region,” Proc. 15th NIPR Symp. Antartc. Meteorit., 119–121 (1990).Google Scholar
  95. 95.
    R. A. Zeigler, R. L. Korotev, and B. L. Jolliff, “Petrography of Lunar Meteorite PCA02007, a New Feldspathic Regolith Breccia,” Lunar Planet. Sci. 35, 1978 (2004).Google Scholar
  96. 96.
    J. Zipfel, B. Spettel, H. Palme, et al., “Dar al Gani 400: Chemistry and Petrology of the Largest Lunar Meteorite,” Meteoritics Planet. Sci. 33(4), A171 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • S. I. Demidova
    • 1
  • M. A. Nazarov
    • 1
  • C. A. Lorenz
    • 1
  • G. Kurat
    • 2
    • 3
  • F. Brandstätter
    • 2
  • Th. Ntaflos
    • 3
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Naturhistorisches MuseumBurgring 7Österreich
  3. 3.Departament für LithosphärenforschungUniversität WienWienÖsterreich

Personalised recommendations