Skip to main content
Log in

Composition and genesis of inner-contact syenites of the Khasurta quartz syenite-monzonite massif, western Transbaikalia

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper reports data on the geological structure, mineralogy, and geochemistry of inner-contact syenites of the Late Paleozoic Khasurta quartz syenite-monzonite massif in western Transbaikalia. The rocks of the massif intrude Cambrian terrigenous-carbonate deposits transformed (depending on their composition) into apodolomitic magnesian spinel-fassaite skarns or plagioclase-quartz-biotite-cordierite hornfels that replaced amphibole-biotite schists. The skarn zone does not exceed a few dozen centimeters in thicknes. The inner-contact zone of the intrusion a few dozen meters thick consists of leucocratic medium-grained pyroxene syenites, which consist of coarsely perthitic K-Na feldspar (90–95 vol %) with plagioclase (An 40–46) cores, zonal clinopyroxene (up to 5–7 vol %), and sphene (up to 3–4 vol %). The inner-contact syenites differ from all other rocks of this massif in having the highest alkalinity and elevated concentrations of SiO2 and the lowest contents of CaO, MgO, and FeO. The mineralogical composition of the inner-contact syenites makes them similar to skarn-related metasomatic rocks (Korzhinskii, 1948), but the pyroxenes of these rocks contain melt inclusions homogenizing at 1100°C, a fact testifying to the magmatic genesis of the rocks. The results of our research indicate that the inner-contact syenites were formed with the assimilation of the host dolomites by the syenite melt. The enrichment of the inner-contact syenite melt in CaO and MgO and a significant increase in its liquidus temperature due to CO2 dissolution (Jahannes and Holtz, 1996) facilitated the crystallization of calcic plagioclase, pyroxene, and magnetite. The fractionation of these minerals resulted in the enrichment of the residual melt in SiO2 and alkalis, mostly K2O, and this subalkaline residual melt produced that K-Na feldspar, which is the predominant mineral of these rocks, and sphene. Excess CO2 drastically suppressed the H2O activity in the melt and thus hampered the crystallization of amphibole and biotite in the inner-contact zone of the intrusion. Mass-balance calculations indicate that dolomite assimilation was not very extensive and did not exceed 1: 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Aleksandrov, Geochemistry of Skarn and Ore Formation in Dolomites (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  2. V. S. Antipin, Geochemical Evolution of the Calc-Alkaline and Subalkaline Magmatism (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  3. C. W. Burnham, “Magmas and Hydrothermal Fluids,” in Geochemistry of Hydrothermal Ore Deposits, ed. by H. L. Barnes (Wiley, New York, 1979; Mir, Moscow, 1982), pp. 71–136 [in Russian].

    Google Scholar 

  4. R. A. Brooker, S. C. Kohn, J. R. Holloway, and P. F. McMillan, “Structural Controls on the Solubility of CO2 in Silicate Melts. Part II: IR Characteristics of Carbonate Groups in Silicate Glasses,” Chem. Geol. 174, 241–254 (2001).

    Article  Google Scholar 

  5. I. V. Burdukov, A. A. Tsygankov, and T. T. Vrublevskaya, “Inner-Contact Syenites of the Khasurta Monzonite-Granosyenite Pluton: Magmatic Or Metasomatic Rocks?,” in Proceedings of the Interim IAGOD Conference on Metallogeny of the Northwest Pacific: Tectonics, Magmatism and Metallogeny of Active Continental Margins, Vladivostok, Russia, 2004 (Dalnauka, Vladivostok, 2004), pp. 184–187.

    Google Scholar 

  6. C. W. Burham and R. H. Jahns, “A Method for Determining the Solubility of Water in Silicate Melts,” Am. J. Sci. 260, 721–745 (1962).

    Article  Google Scholar 

  7. N. L. Dobretsov, Yu. N. Kochkin, A. P. Krivenko, and V. A. Kutolin, Rock-Forming Pyroxenes (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  8. M. B. Epel’baum, Silicate Melts with Volatiles (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  9. G. B. Fershtater, “Empirical Plagioclase-Hornblende Barometer,” Geokhimiya, No. 3, 328–335 (1990).

  10. F. Gaillard, B. Scaillet, M. Pichavant, and J.-M. Beny, “The Effect of Water and f o 2 on the Ferric-Ferrous Ratio of Silicic Melts,” Chem. Geol. 174, 255–273 (2001).

    Article  Google Scholar 

  11. M. Gerard, B. Jacques-Marie, and M. J.-P. Rene, “Chemical Trends of Early-Formed Clinopyroxene Phenocrysts from Some Alkaline and Orogenic Basic Lavas,” Bull. Soc. Geol. Fr. 4, 851–859 (1988).

    Google Scholar 

  12. E. N. Gramenitskii, A. R. Kotel’nikova, A. M. Batanova, et al., Experimental and Technical Petrology (Nauchnyi Mir, Moscow, 2000) [in Russian].

    Google Scholar 

  13. E. N. Grib and V. L. Leonov, “Evolution of Magmatic Chambers of the Calderas in the Southern Sector of the Karymskii Volcanic Center. Part II. P-T-f Crystallization Conditions of Ignimbrite-Forming Melts and the Magmatic Evolution,” Vulkanol. Seismol., No. 5, 23–36 (2004).

  14. T. Holland and J. Blundy, “Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry,” Contrib. Mineral. Petrol. 116(4), 433–447 (1994).

    Article  Google Scholar 

  15. W. Johannes and F. Holtz, Petrogenesis and Experimental Petrology of Granitic Rocks (Springer, Berlin, 1996).

    Google Scholar 

  16. S. V. Kanakin and N. S. Karmanov, “An IBM Compatible Software Package for an MAR-3 and MAR-4 Microprobes,” in Proceedings of 3rd All-Russia and 6th Siberian Conference on X-ray Analysis, Irkutsk, 1998 (Irkutsk, 1998), p. 67 [in Russian].

  17. N. S. Karmanov and S. V. Kanakin, “Modernization of a MAR-3 Microprobe,” in Proceedings of 3rd All-Russia and 6th Siberian Conference on X-ray Diffraction Analysis, Irkutsk, 1998 (Irkutsk, 1998), p. 24 [in Russian].

  18. Classification and Nomenclature of Igneous Rocks (Nedra, Moscow, 1981) [in Russian].

  19. D. S. Korzhinskii, “A Sketch of Metasomatic Processes,” in Principal Problems in the Study of Magmatic Ore Deposits (Akad. Nauk SSSR, Moscow, 1955), pp. 334–456 [in Russian].

    Google Scholar 

  20. D. S. Korzhinskii, “Petrology of the Tur’inskii Copper Skarn Deposit,” Tr. Inst. Geol. Nauk Akad. Nauk SSSR, No. 68, 148 (1948).

  21. B. E. Leak, A. R. Woolley, C. E. S. Arps, et al., “Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names,” Eur. J. Mineral. 9, 623–642 (1997).

    Google Scholar 

  22. F. A. Letnikov, V. Ya. Medvedev, and L. A. Ivanova, Interaction of Granitoid Melt with Carbonates and Silicates (Nauka, Novosibirsk, 1978) [in Russian].

    Google Scholar 

  23. B. A. Litvinovskii, A. N. Zanvilevich, A. M. Alakshin, and Yu. Yu. Podladchikov, Angara-Vitim Batholith: The Largest Granitoid Pluton (OIGGM SO RAN, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  24. B. A. Litvinovsky, B. Jahn, A. N. Zanvilevich, et al., “Petrogenesis of Syenite-Granite Suites from the Brynsky Complex (Transbaikalia, Russia): Implications for the Origin of A-Type Granitoid Magmas,” Chem. Geol. 189, 105–133 (2002).

    Article  Google Scholar 

  25. J. B. Lowenstern, “A Review of the Contrasting Behavior of Two Magmatic Volatiles: Chlorine and Carbon Dioxide,” J. Geochem. Explor. 69–70, 287–290 (2000).

    Article  Google Scholar 

  26. O. S. Marenkov, Tables and Formulas of X-Ray Diffraction Analysis (LNPO “Burevestnik”, Leningrad, 1982) [in Russian].

    Google Scholar 

  27. Metasomatism and Metasomatic Rocks, Ed. by V. A. Zharikov and V. L. Rusinov (Nauchnyi Mir, Moscow, 1998) [in Russian].

    Google Scholar 

  28. N. N. Pertsev, High-Temperature Metamorphism and Metasomatism of Carbonate Rocks (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  29. D. Perugini and G. Poli, “Analysis and Numerical Simulation of Chaotic Advection and Chemical Diffusion During Magma Mixing: Petrological Implications,” Lithos 78(1–2), 43–66 (2004).

    Article  Google Scholar 

  30. F. G. Reyf, Physicochemical Formation Conditions of Large Granitoid Masses of the Eastern Transbaikalia (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  31. F. G. Reyf, “Immiscible Phases of Magmatic Fluid and Their Relation to Be and Mo Mineralization at the Yermakovka F-Be Deposit, Transbaikalia, Russia,” Chem. Geol. 21, 49–71 (2004).

    Article  Google Scholar 

  32. F. G. Reyf, R. Seltmann, and G. P. Zaraisky, “The Role of Magmatic Processes in the Formation of Banded Li, F-enriched Granites from the Orlovka Tantalum Deposit, Transbaikalia, Russia: Microthermometric Evidence,” Canad. Mineral. 38, pp. 915–936 (2000)

    Google Scholar 

  33. I. D. Ryabchikov, Thermodynamics of a Fluid Phase in Granitoid Magmas (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  34. L. I. Shabynin, Genesis of Magnesian Skarns (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  35. N. F. Shinkarev and V. V. Ivannikov, Physicochemical Petrology of Igneous Rocks (Nedra, Leningrad, 1983) [in Russian].

    Google Scholar 

  36. S. S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Oceanic Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ., No. 42, 313–345 (1989).

  37. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985; Mir, Moscow, 1988).

    Google Scholar 

  38. A. A. Tsygankov and T. T. Vrublevskaya, “The Nature of Anomalous Ba Contents in Riphean Granitoids of the Island-Arc Type in Eastern Siberia,” Geokhimiya, No. 12, 1241–1251 (1998) [Geochem. Int. 36, 1123–1132 (1998)].

  39. A. A. Tsygankov, D. I. Matukov, N. G. Berezhnaya, et al., “Angara-Vitim Granitoid Aureole-Pluton: Geochronology and Formation Conditions,” in Zavaritskii’s Readings on Geology and Metallogeny of Ultramafic-Mafic and Granitoid Associations of Fold Areas, Yekaterinburg, Russia, 2004 (IGiG UrO RAN, Yekaterinburg, 2004), pp. 408–412 [in Russian].

    Google Scholar 

  40. D. R. Wones and H. P. Eugster, “Stability of Biotite: Experiment, Theory and Applications,” Am. Mineral. 50, 1228–1272 (1965).

    Google Scholar 

  41. V. V. Yarmolyuk, S. V. Budnikov, V. I. Kovalenko, et al., “Geochronology and Geodynamic Setting of the Angara-Vitim Batholith,” Petrologiya 5, 451–466 (1997) [Petrology 5, 401–414 (1997)].

    Google Scholar 

  42. G. P. Zaraiskii, V. A. Zharikov, F. M. Stoyanovskaya, and V. N. Balashov, Experimental Study of the Formation of Bimetasomatic Skarns (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  43. V. A. Zharikov, “Reaction Phenomena during the Magmatic and Postmagmatic Stages of the Formation of Skarn Deposits,” in Proceedings of 2nd All-Russia Petrographic Conference on Magmatism and Related Mineral Resources (Moscow, 1960), pp. 507–522 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Tsygankov, I.V. Burdukov, T.T. Vrublevskaya, 2007, published in Petrologiya, 2007, Vol. 15, No. 2, pp. 196–224.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsygankov, A.A., Burdukov, I.V. & Vrublevskaya, T.T. Composition and genesis of inner-contact syenites of the Khasurta quartz syenite-monzonite massif, western Transbaikalia. Petrology 15, 184–209 (2007). https://doi.org/10.1134/S0869591107020051

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591107020051

Keywords

Navigation