Skip to main content
Log in

Experimental study of the effect of SiO2 on Ni solubility in silicate melts

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The solubility of Ni in silicate melts with variable SiO2 content was studied at a total pressure of 1 atm within a wide range of temperature and oxygen fugacity. The maximum solubility of Ni (minimum activity coefficient of NiO) was observed in melts with ∼55–57 wt % SiO2, regardless of temperature and oxygen fugacity. Melts beyond this range showed significantly lower Ni solubility and, correspondingly, higher NiO activity coefficients. The analysis of our results and literature data led us to the conclusion that the NBO/T (number of nonbridging oxygen atoms per tetrahedrally coordinated atom) is inadequate to describe the effect of melt composition on Ni solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Andreeva, V. A. Baskina, O. A. Bogatikov, et al., Igneous Rocks: Classification, Nomenclature, and Petrography (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  2. P. Beattie, C. Ford, and D. Russel, “Partition Coefficients for Olivine-Melt and Orthopyroxene-Melt Systems,” Contrib. Mineral. Petrol. 109, 212–224 (1991).

    Article  Google Scholar 

  3. A. Borisov, “Loop Technique: Dynamics of Metal/Melt Equilibration,” Mineral. Petrol. 71, 87–94 (2001).

    Article  Google Scholar 

  4. A. Borisov, Y. Lahaye, and H. Palme, “The Effect of TiO2 on Pd, Ni and Fe Solubilities in Silicate Melts,” Am. Mineral. 89, 564–571 (2004).

    Google Scholar 

  5. S. P. Clark, J. F. Schairer, Jr., and J. De Neufville, “Phase Relations in the System CaMgSi2O6—CaAl2SiO6-SiO2 at Low and High Pressure,” Carnegie Inst. Washington, Year Book 61, 59–68 (1962).

    Google Scholar 

  6. R. O. Colson, A. M. Floden, T. R. Haugen, et al., “Activities of NiO, FeO, and O2− in Silicate Melts,” Geochim. Cosmochim. Acta 69, 3061–3073 (2005).

    Article  Google Scholar 

  7. P. S. Deines, R. H. Nafziger, G. C. Ulmer, and E. Woermann, “Temperature-Oxygen Fugacity Tables for Selected Gas Mixtures in the System C-H-O at One Atmosphere Total Pressure,” Bull. Earth Miner. Sci., Exp. St. 88 (1974).

  8. D. B. Dingwell, H. St. C. O’Neill, W. Ertel, and B. Spettel, “The Solubility and Oxidation State of Ni in Silicate Melts at Low Oxygen Fugacities: Results Using a Mechanically Assisted Equilibration Technique,” Geochim. Cosmochim. Acta 58, 1967–1974 (1994).

    Article  Google Scholar 

  9. W. Ertel, D. B. Dingwell, and H. St. C. O’Neill, “Solubility of Tungsten in a Haplobasaltic Melt as Function of Temperature and Oxygen Fugacity,” Geochim. Cosmochim. Acta 60, 1171–1180 (1996).

    Article  Google Scholar 

  10. W. Ertel, D. B. Dingwell, and H. St. C. O’Neill, “Compositional Dependence of the Activity of Nickel in Silicate Melts,” Geochim. Cosmochim. Acta 61, 4707–4721 (1997).

    Article  Google Scholar 

  11. A. Holzheid, H. Palme, and S. Chakraborty, “The Activities of NiO, CoO and FeO in Silicate Melts,” Chem. Geol. 139, 21–38 (1997).

    Article  Google Scholar 

  12. J. E. Mungall, “Empirical Models Relating Viscosity and Tracer Diffusion in Magmatic Silicate Melts,” Geochim. Cosmochim. Acta 66, 125–143 (2002).

    Article  Google Scholar 

  13. B. O. Mysen, Structure and Properties of Silicate Melts (Elsevier, Amsterdam, 1988).

    Google Scholar 

  14. G. S. Nikolaev, A. A. Borisov, and A. A. Ariskin, “Calculation of the Ferric-Ferrous Ratio in Magmatic Melts: Testing and Additional Calibration of Empirical Equations for Various Magatic Series,” Geokhimiya, No. 8, 713–722 (1996) [Geochem. Int. 34, 641–649 (1996)].

  15. H. St. C. O’Neill and S. M. Eggins, “The Effect of Melt Composition on Trace Element Partitioning: An Experimental Investigation of the Activity Coefficients of FeO, NiO, CoO, MoO2 and MoO3 in Silicate Melts,” Chem. Geol. 186, 151–181 (2002).

    Article  Google Scholar 

  16. G. Ottonello, R. Moretti, L. Marini, and M. V. Zuccolini, “Oxidation State of Iron in Silicate Glasses and Melts: A Thermochemical Model,” Chem. Geol. 174, 157–179 (2001).

    Article  Google Scholar 

  17. E. B. Pretorius and A. Muan, “Activity of Nickel (II) Oxide in Silicate Melts,” J. Am. Ceram. Soc. 75, 1490–1496 (1992).

    Article  Google Scholar 

  18. K. Righter, M. J. Drake, and G. Yaxley, “Prediction of Siderophile Element Metal-Silicate Partitioning Coefficients to 20 GPa and 2800°C: the Effect of Pressure, Temperature, Oxygen Fugacity, and Silicate and Metallic Melt Compositions,” Phys. Earth Planet. Inter. 100, 115–134 (1997).

    Article  Google Scholar 

  19. R. O. Sack, I. S. E. Carmichael, M. Rivers, and N. S. Ghiorso, “Ferric-Ferrous Equilibria in Natural Silicate Liquids at 1 bar,” Contrib. Mineral. Petrol. 75, 369–376 (1980).

    Article  Google Scholar 

  20. M. Temkin, “Mixtures of Molten Salts as Ionic Solutions,” Zh. Fiz. Khim. 20(1), 105–110 (1946).

    Google Scholar 

  21. G. W. Toop and C. S. Samis, “Activities of Ions in Silicate Melts,” Trans. Metall. Soc. AIME 224, 878–887 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Borisov, 2006, published in Petrologiya, 2006, Vol. 14, No. 6, pp. 564–575.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, A.A. Experimental study of the effect of SiO2 on Ni solubility in silicate melts. Petrology 14, 530–539 (2006). https://doi.org/10.1134/S0869591106060026

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591106060026

Keywords

Navigation