Skip to main content
Log in

Composition and structure of the lower crust of the Belomorian Mobile Belt, Baltic Shield

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The lower crust of the Belomorian Mobile Belt consists predominantly of garnet peridotites with subordinate amounts of pyroxenites and spinel peridotites, which occur as xenoliths in Devonian diatremes and dikes in the southern part of the Kola Peninsula. When transported to the surface by ultrabasic melts, the xenoliths were affected by fluids from the host ultrabasic lamprophyres with the introduction of Ca, Mg, and such trace elements as Ba, Nb, Sr, and P. The concentrations of trace elements (Sm, Nd, Y, Ti, Zr, Ni, Cr, and others) and the Sm-Nd isotopic composition were not significantly modified, which makes it possible to use them to compare the xenoliths with the near-surface complexes and to reproduce the composition of the protoliths. The Paleoproterozoic lower crust was produced during the emplacement of mantle magmas into metabasites in the Neoarchean lower crust, a process that was accompanied by the contamination of the melts and the origin of rocks showing characteristics of mantle and crust material. The emplacement of significant melt volumes into the Neoarchean lower crust caused its heating and enabled its viscous-plastic flow. This flow could likely also affect the material of the upper mantle, as follows from the occurrence of spinel peridotite nodules among the garnet granulites with an increase in the amount of mantle xenoliths from the roof to bottom of the lower crust. The overall amount of ultrabasic rocks in the lower crust was evaluated at 8–10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Afanas’eva, N. Yu. Bardina, O. A. Bogatikov, et al., Petrography and Petrology of the Magmatic, Metamorphic, and Metasomatic Rocks (Logos, Moscow, 2001) [in Russian].

    Google Scholar 

  2. Y. V. Amelin, L. M. Heaman, and V. S. Semenov, “U-Pb Geochronology of Layered Mafic Intrusions in the Eastern Baltic Shield: Implications for the Timing and Duration of Paleoproterozoic Continental Rifting,” Precambrian Res. 75, 31–46 (1995).

    Article  Google Scholar 

  3. A. A. Arzamastsev and B. V. Belyatskii, “Evolution of the Mantle Source of the Khibiny Massif: Evidence from Rb-Sr and Sm-Nd Data on Deep-Seated Xenoliths,” Dokl. Akad. Nauk 366(3), 387–391 (1999) [Dokl. Earth Sci. 366 (4), 562 (1999)].

    Google Scholar 

  4. A. A. Arzamastsev, B. V. Belyatsky, and L. V. Arzamastseva, “Agpaitic Magmatism in the Northeastern Baltic Shield: a Study of the Niva Intrusion, Kola Peninsula, Russia,” Lithos 51, 27–46 (2000).

    Article  Google Scholar 

  5. V. V. Balaganskii, V. N. Glaznev, and L. G. Osipenko, “The Early Proterozoic Evolution of the Northeastern Baltic Shield: A Terrane Analysis,” Geotektonika, No. 2, 16–28 (1998) [Geotectonics 32 (2), 81 (1998)].

  6. Y. Balashov, T. Bayanova, and F. Mitrofanov, “Isotope Data on the Age and Genesis of Layered Basic-Ultrabasic Intrusions in the Kola Peninsula and Northern Karelia, Northeastern Baltic Shield,” Precambrian Res. 64, 197–205 (1993).

    Article  Google Scholar 

  7. T. B. Bayanova and V. V. Chashchin, “New Results of Radiological Dating of the Acid Metavolcanic Rocks of the Kislaya Guba and Seiodorechka Formations,” in Proceedings of the 1st All-Russia Paleovolcanological Symposium, Petrozavodsk, Russia, 2001 (Petrozavodsk, 2001), pp. 16–17 [in Russian].

  8. A. D. Beard, H. Downes, E. Hegner, et al., “Mineralogy and Geochemistry of Devonian Ultramafic Minor Intrusions of the Southern Kola Peninsula, Russia: Implications for the Petrogenesis of Kimberlites and Melilitites,” Contrib. Mineral. Petrol. 130, 288–303 (1998).

    Article  Google Scholar 

  9. A. D. Beard, H. Downes, V. Vetrin, et al., “Petrogenesis of Devonian Lamprophyre and Carbonatite Minor Intrusions, Kandalaksha Gulf (Kola Peninsula, Russia),” Lithos 39, 93–119 (1996).

    Article  Google Scholar 

  10. E. V. Bibikova, A. I. Slabunov, S. V. Bogdanova, et al., “Early Magmatism of the Belomorian Mobile Belt, Baltic Shield: Lateral Zoning and Isotopic Age,” Petrologiya 7(2), 115–140 (1999) [Petrology 7 (2), 123 (1999)].

    Google Scholar 

  11. I. N. Bindeman, E. V. Sharkov, and D. A. Ionov, “Xenoliths of Biotite-Garnet-Orthopyroxene Rocks in the Dike-like Explosion Pipe of Elovy Island, White Sea,” Zap. Vseross. Mineral. O-va 119(3), 1–11 (1990).

    Google Scholar 

  12. W. V. Boynton, “Cosmochemistry of the Rare Earth Elements: Meteorite Studies,” in Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63–114.

    Google Scholar 

  13. S. Yu. Chistyakova, T. B. Bayanova, O. V. Gogol, and A. A. Delenitsin, “Variations in the 87Sr/86Sr Ratios Across the Magnetite Gabbro Body in the Western Pana Tundra Layered Intrusion, Kola Peninsula,” in Proceedings of 2nd All-Russia Petrographic Conference, Syktyvkar, Russia, 2000 (Syktyvkar, 2000), Vol. 4, pp. 353–355 [in Russian].

    Google Scholar 

  14. S. Claesson, V. Vetrin, T. Bayanova, and H. Downes, “U-Pb Zircon Ages from a Devonian Carbonatite Dyke, Kola Peninsula, Russia: a Record of Geological Evolution from the Archaean to the Palaeozoic,” Lithos 51, 95–108 (2000).

    Article  Google Scholar 

  15. L. F. Dobrzhinetskaya, O. Nordgulen, V. R. Vetrin, et al., “Correlation of the Archaean Rocks between the Sørvaranger Area, Norway, and the Kola Peninsula, Russia (Baltic Shield),” Geol. Unders. Spec. Publ. 7, 7–28 (1995).

    Google Scholar 

  16. H. Downes, “The Nature of the Lower Continental Crust of Europe: Petrological and Geochemical Evidence from Xenoliths,” Physics Earth Planet. Inter. 79, 195–218 (1993).

    Article  Google Scholar 

  17. H. Downes, A. D. Beard, K. Jarvis, and V. Vetrin, “Mantle Xenoliths from the Kola Peninsula: Evidence for Mantle Processes beneath the Baltic Shield,” in Proceedings of 5th Workshop of the SVEKALAPKO Project, Lammi, Finland, 2000 (Lammi, 2000), p. 15.

  18. H. Downes, P. Peltonen, I. Mänttäri, and E. V. Sharkov, “Proterozoic Zircon Ages from Lower Crustal Granulite Xenoliths, Kola Peninsula, Russia: Evidence for Crustal Growth and Reworking,” J. Geol. Soc. 159, 485–488 (2002).

    Google Scholar 

  19. G. Faure, Principles in Isotope Geology (Wileys, New York, 1986; Mir, Moscow, 1989).

    Google Scholar 

  20. T. Frisch, G. D. Jackson, V. A. Glebovitsky, et al., “U-Pb Ages of Zircon from the Kolvitsa Gabbro-Anorthosite Complex, Southern Kola Peninsula, Russia,” Petrologiya 3(3), 248–254 (1995) [Petrology 3 (3), 219–225 (1995)].

    Google Scholar 

  21. Geology of the Kola Peninsula, Ed. by F. P. Mitrofanov (Kola Sci. Centre, Apatite, 1995).

    Google Scholar 

  22. V. A. Glebovitsky, “Tectonics and Regional Metamorphism of the Early Precambrian of the Eastern Baltic Shield,” Reg. Geol. Metallogen., No. 1, 7–24 (1993).

  23. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr Isotopic Systematics of River Water Suspended Material: Implications for Crustal Evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  24. M. Grad and U. Luosto, “Seismic Models of the Crust of the Baltic Shield along the SVEKA Profile in Finland,” Ann. Geophys., No. 5, 639–650 (1987).

    Google Scholar 

  25. Greenstone Belts of the East European Platform Basement (Nauka, Leningrad, 1988) [in Russian].

  26. P. Hölttä, H. Huhma, I. Mänttäri, et al., “Petrology and Geochemistry of Mafic Granulite Xenoliths from the Lahtojoki Kimberlite Pipe, Eastern Finland,” Lithos 51, 109–133 (2000).

    Article  Google Scholar 

  27. Imandra-Varzuga Karelide Zone: Geology, Geochemistry, and Evolution (Nauka, Leningrad, 1982) [in Russian].

  28. B.-M. Jahn, F. Wu, and B. Chen, “Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic,” Episodes 23(2), 82–92 (2000).

    Google Scholar 

  29. P. D. Kempton, H. Downes, E. V. Sharkov, et al., “Petrology and Geochemistry of Xenoliths from the Northern Baltic Shield: Evidence for Partial Melting and Metasomatism in the Lower Crust beneath an Archaean Terrane,” Lithos 36, 157–184 (1995).

    Article  Google Scholar 

  30. P. D. Kempton, H. Downes, L. A. Neymark, et al., “Garnet Granulite Xenoliths from the Northern Baltic Shield—the Underplated Lower Crust of a Palaeoproterozoic Large Igneous Province?,” J. Petrol. 42(4), 731–763 (2001).

    Article  Google Scholar 

  31. V. N. Kobranova, B. I. Izvekov, S. L. Patsevich, and M. D. Shvartsman, Determination of Petrophysical Characteristics on Samples (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  32. K. Condie, Archean Greenstone Belts (Elsevier, Amsterdam, 1981; Mir, Moscow, 1983).

    Google Scholar 

  33. M. Yu. Koreshkova, L. K. Levskii, and V. V. Ivanikov, “Petrology of a Lower Crustal Xenolith Suite from Dikes and Explosion Pipes of the Kandalaksha Graben,” Petrologiya 9(1), 89–106 (2001) [Petrology 9 (1), 79 (2001)].

    Google Scholar 

  34. U. Kramm, L. N. Kogarko, V. A. Kononova, and H. Vartiainen, “The Kola Alkaline Province of the CIS and Finland: Precise Rb-Sr Ages Define 380–360 Ma Age Range for All Magmatism,” Lithos 30, 33–44 (1993).

    Article  Google Scholar 

  35. A. A. Kremenetskii and L. N. Ovchinnikov, Geochemistry of the Deep-Seated Rocks (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  36. A. A. Kremenetskii, Metamorphism of Precambrian Mafic Rocks (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  37. R. Kretz, “Symbols for Rock-Forming Minerals,” Am. Mineral. 68, 277–279 (1983).

    Google Scholar 

  38. I. T. Kukkonen and P. Peltonen, “Xenolith-Controlled Geotherm for the Central Fennoscandian Shield: Implication for Lithosphere-Asthenosphere Relations,” J. South Am. Earth Sci. 304, 301–315 (1999).

    Google Scholar 

  39. T. S. Lebedev, V. A. Korchin, B. Ya. Savenko, et al., High-Pressure Petrophysical Studies and Their Geophysical Implications (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  40. T. C. Liew and A. W. Hofmann, “Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from a Nd and Sr Isotopic Study,” Contrib. Mineral. Petrol. 98(2), 129–138 (1988).

    Article  Google Scholar 

  41. S. B. Lobach-Zhuchenko, N. A. Arestova, V. P. Chekulaev, et al., “Geochemistry and Petrology of 2.40–2.45 Ga Magmatic Rocks in the North-Western Belomorian Belt, Fennoscandian Shield, Russia,” Precambrian Res. 92, 223–250 (1998).

    Article  Google Scholar 

  42. S. B. Lobach-Zhuchenko, V. P. Chekulaev, V. S. Stepanov, et al., “The White Sea Foldbelt—Late Archean Accretion-and Collision-related Zone of the Baltic Shield,” Dokl. Akad. Nauk 358(2), 226–229 (1998) [Dokl. Earth Sci. 358 (1), 34 (1998)].

    Google Scholar 

  43. A. J. W. Markwick and H. Downes, “Lower Crustal Granulite Xenoliths from the Arkhangelsk Kimberlite Pipes: Petrological, Geochemical and Geophysical Results,” Lithos 51, 135–151 (2000).

    Article  Google Scholar 

  44. V. A. Melezhik and B. A. Sturt, “General Geology and Evolutionary History of the Early Proterozoic Polmak-Pasvik-Pechenga-Imandra-Varzuga-Ust’Ponoy Greenstone Belt in the Northeastern Baltic Shield,” Earth Sci. Rev. 36, 205–241 (1994).

    Article  Google Scholar 

  45. R. I. Mil’kevich, Yu. V. Miller, V. A. Glebovitsky, et al., “Tholeiitic and Calc-Alkaline Magmatism in the Northern Part of the Tikshozero Greenstone Belt: Geochemical Evidence of a Subduction Environment,” Geokhimiya, No. 12, 1262–1274 (2003) [Geochem. Int. 41 (12), 1152 (2003)].

  46. M. V. Mints, V. N. Glaznev, A. N. Konilov, et al., Early Precambrian of the Northeastern Baltic Shield: Paleogeodynamics, Structure, and Evolution of the Continental Crust (Nauchnyi Mir, Moscow, 1996) [in Russian].

    Google Scholar 

  47. F. P. Mitrofanov, A. A. Zhangurov, Zh. A. Fedotov, et al., “Platinum Potential of the Imandra Layered Intrusion,” in Platinum of Russia (Geoinformmark, Moscow, 1995), pp. 26–42 [in Russian].

    Google Scholar 

  48. F. P. Mitrofanov, V. V. Balaganskii, Yu. A. Balashov, et al., “U-Pb Age of Gabbro-Anorthosites of the Kola Peninsula,” Dokl. Akad. Nauk 333(1), 95–98 (1993).

    Google Scholar 

  49. S. Moorbath and P. N. Taylor, “Geochronology and Related Isotope Geochemistry of High-Grade Metamorphic Rocks from the Lower Continental Crust,” Geol. Soc. Spec. Publ. 24, 211–220 (1986).

    Article  Google Scholar 

  50. L. A. Neymark, A. A. Nemchin, V. R. Vetrin, and E. A. Sal’nikova, “Sm-Nd and Pb-Pb Isotope Systems in the Lower Crustal Xenoliths from Dikes and Explosion Pipes in the Southern Kola Peninsula,” Dokl. Akad. Nauk 329(6), 781–784 (1993).

    Google Scholar 

  51. R. C. Newton and D. Perkins, “Thermodynamic Calibration of Geobarometers Based on the Assemblages Garnet-Plagioclase-Orthopryoxene (Clinopyroxene)-Quartz,” Am. Mineral. 67, 203–222 (1982).

    Google Scholar 

  52. P. Peltonen, K. A. Kinnunen, and H. Huhma, “Petrology of Two Diamondiferous Eclogite Xenoliths from the Lahtojoki Kimberlite Pipe, Eastern Finland,” Lithos 63, 151–164 (2002).

    Article  Google Scholar 

  53. Petrophysical Characteristics of the Russian Baltic Shield (Kol’sk. Fil. AN SSSR, Apatity, 1976) [in Russian].

  54. R. Powell and T. J. B. Holland, “An Internally Consistent Data Set with Uncertainties and Correlations: 3. Applications to Geobarometry, Worked Examples and a Computer Program,” J. Metamorph. Geol. 6, 173–204 (1988).

    Google Scholar 

  55. R. Powell, “Regression Diagnostics and Robust Regression in Geothermometer/Geobarometer Calibration: the Garnet-Clinopyroxene Geothermometer Revisited,” J. Metamorph. Geol. 3, 327–342 (1985).

    Google Scholar 

  56. Precambrian Volcanism and Sedimentation in the Northeastern Baltic Shield (Nauka, Leningrad, 1987) [in Russian].

  57. A. A. Predovskii, Reconstruction of the Settings of Early Precambrian Sedimentation and Volcanism (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  58. N. M. S. Rock, Lamprophyres (Blackie, Glasgow, 1991).

    Google Scholar 

  59. R. L. Rudnick and D. M. Fountain, “Nature and Composition of the Continental Crust: a Lower Crustal Perspective,” Rev. Geophys. 33(3), 267–309 (1995).

    Article  Google Scholar 

  60. A. V. Savitskii, V. I. Stepanenko, E. B. Anderson, et al., “New Data on the Granites of the Southwestern Kola Peninsula,” Dokl. Akad. Nauk SSSR 302(5), 1186–1191 (1988).

    Google Scholar 

  61. E. V. Sharkov and I. S. Puchtel, “Mineralogy of Eclogites (Garnet Websterites) and Eclogite-like rocks from the Explosion Pipes of Elovy Island, Kola Peninsula,” in Deep-seated Xenoliths and Lithospheric Structure (Nauka, Moscow, 1987), pp. 127–148 [in Russian].

    Google Scholar 

  62. E. V. Sharkov, G. A. Snyder, L. A. Taylor, and T. F. Zinger, “An Early Proterozoic Large Igneous Province in the Eastern Baltic Shield: Evidence from the Mafic Drustie Complex, Belomorian Mobile Belt, Russia,” Intern. Geol. Review 41, 73–93 (1999).

    Article  Google Scholar 

  63. E. V. Sharkov, I. S. Krassivskaya, and A. V. Chistyakov, “Dispersed Mafic-Ultramafic Intrusive Magmatism in Early Paleoproterozoic Mobile Zones of the Baltic Shield: An Example of the Belomorian Drusite (Coronite) Complex,” Petrologiya 12(6), 632–655 (2004) [Petrology 12 (6), 561 (2004)].

    Google Scholar 

  64. N. V. Sharov, Lithosphere of the Baltic Shield Based on Seismic Data (Kol’sk. Nauch. Ts. Ross. Akad. Nauk, Apatity, 1993) [in Russian].

    Google Scholar 

  65. K. A. Shurkin and T. A. Rumyantseva, Explosion Breccia of the Kandalaksha Alkaline Lamprophyre Complex. Petrologic-Mineralogic Features of the Rocks and Technical Stones (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  66. V. F. Smolkin, V. V. Borisova, S. A. Svetov, and A. E. Borisov, “Late Archean Komatiites of the Ura Bay-Titovka Structure, Northwestern Kola Region,” Petrologiya 8(2), 199–224 (2000) [Petrology 8 (2), 177 (2000)].

    Google Scholar 

  67. V. F. Smolkin, Zh. A. Fedotov, Yu. N. Neradovskii, et al., Layered Intrusions of the Monchegorsk Ore District: Petrology, Mineralization, Isotopy, and Deep-Seated Structure (Kol’sk. Nauch. Tsentr, Apatity, 2004), Part 2 [in Russian].

    Google Scholar 

  68. V. S. Stepanov, Precambrian Mafic Magmatism of the Western Belomorian Region (Nauka, Leningrad, 1981) [in Russian].

    Google Scholar 

  69. S.-S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in “Magmatism in the Ocean Basins,” Ed. by M. J. Norry, Geol. Soc. London Spec. Publ. 42, 313–345 (1989).

  70. E. N. Terekhov and V. I. Levitskii, “Granulites of the Lapland Belt: Rare-Earth Elements and Petrogenetic Problems,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 5, 3–18 (1993).

  71. M. J. Timmerman and J. S. Daly, “Sm-Nd Evidence for Late Archaean Crust Formation in the Lapland-Kola Mobile Belt, Kola Peninsula, Russia and Norway,” Precambrian Res. 72, 97–107 (1995).

    Article  Google Scholar 

  72. A. A. Tripol’skii and N. V. Sharov, Lithosphere of the Precambrian Shields in the Earth’s Northern Hemisphere Based on Seismic Data (Karel’sk. Nauch. Tsentr Ross. Akad. Nauk, Petrozavodsk, 2004) [in Russian].

    Google Scholar 

  73. V. R. Vetrin and A. A. Nemchin, “The U-Pb Age of Zircon from a Granulite Xenolith in the Diatreme on the Elovy Island, the Southern Kola Peninsula,” Dokl. Akad. Nauk 359(6), 808–810 (1998) [Dokl. Earth Sci. 359A (3), 454 (1998)].

    Google Scholar 

  74. V. R. Vetrin and A. V. Travin, “Age of the Modal Metasomatism during the Formation of the Paleozoic Kola Alkaline Province,” in Proceedings of the 21st All-Russia Seminar and School on the Earth’s Alkaline Magmatism. Geochemistry of the Magmatic Rocks, Apatity, Russia, 2003 (Kol’sk. Nauch. Tsentr, Ross. Akad. Nauk, Apatity, 2003), pp. 36–38 [in Russian].

    Google Scholar 

  75. V. R. Vetrin and M. M. Kalinkin, Reconstruction of Crustal and Crustal-Mantle Magmatism and Metasomatism (Kol’sk. Nauch. Tsentr, Ross. Akad. Nauk, Apatity, 1992) [in Russian].

    Google Scholar 

  76. V. R. Vetrin, “Lower Crust of the Belomorian Megablock: Age, Composition, and Formation Conditions (Evidence from Deep-seated Xenoliths),” Vestn. Murmansk. Gos. Tekhn. Univ. 1(3), 53–60 (1998).

    Google Scholar 

  77. V. R. Vetrin, T. B. Bayanova, I. L. Kamenskii, and S. V. Ikorskii, “U-Pb Ages and Helium Isotope Geochemistry of Rocks and Minerals from the Litsk-Araguba Diorite-Granite Complex (Kola Peninsula),” Dokl. Akad. Nauk 386(2), 85–89 (2002) [Dokl. Earth Sic. 387 (8), 947 (2002)].

    Google Scholar 

  78. O. I. Volodichev, Belomorian Belt of Karelia (Geology and Petrology) (Nauka, Leningrad, 1990) [in Russian].

    Google Scholar 

  79. A. B. Vrevsky, V. A. Matrenichev, and M. S. Ruzh’eva, “Petrology of Komatiites from the Baltic Shield and Isotope Geochemical Evolution of Their Mantle Sources,” Petrologiya 11(6), 587–617 (2003) [Petrology 11 (6), 532 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.R. Vetrin, 2006, published in Petrologiya, 2006, Vol. 14, No. 4, pp. 415–438.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetrin, V.R. Composition and structure of the lower crust of the Belomorian Mobile Belt, Baltic Shield. Petrology 14, 390–412 (2006). https://doi.org/10.1134/S0869591106040047

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591106040047

Keywords

Navigation