Skip to main content
Log in

Petrology of plagiogranites of the Yenisei Batholith, Western Sayan

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The tonalite-plagiogranite (tonalite-trondhjemite) association only occasionally occurs in the form of large granitoid bodies, such as the Yenisei Batholith (>500 km2 in area). The granitoids of the Yenisei Batholith belong to Na-rich tholeiitic rock series and differ from granitoids of the calc-alkaline series in having lower contents of alkalis and alumina (12–14 wt % Al2O3) and low contents of granitophile elements (Rb, Li, Cs, Be, Nb, Ta, and W), Cr, and Ni. The Cr/V (<0.10) and Rb/Sr (0.01–0.1) ratios of these rocks are at a minimum, and their K/Rb (600–1000) and Na/K (5–10) ratios are at a maximum compared to those of the rocks of the most widely spread granitoid batholiths. The plagiogranites typically have REE concentrations higher than those in oceanic plagiogranites and display weakly fractionated REE patterns (La/Yb = 1.4–3.4) with weak (or without) Eu anomalies. The lower initial Sr ratios of these rocks (0.704) and their relatively high concentrations of Pb, Zr, and B testify to the predominantly mantle provenance of their protolithic material. Geological and geochemical characteristics of the Yenisei pluton suggest that its genesis can be considered within the scope of the model of retrograde-type magmatic replacement and that the batholith was produces by the earliest granitization processes in the oceanic crust. The granitic melt was derived at low pressures (<5 kbar) and intermediate temperatures (∼700°C), at the inflow of an aqueous transmagmatic fluid into the magma-generating area and the subsequent fluid-magmatic differentiation. Considering the volumes and compositions of rocks composing the Yenisei Batholith, the latter can be attributed, similarly to other typical granitoid batholiths, to crustal plutons, which differ from both oceanic plagiogranites in ophiolitic belts and continental trondhjemites. The rocks can be regarded as an individual geochemical type of crustal plagiogranites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Alabin and Yu. A. Kalinin, Gold Metallogeny in the Kuznetsk Alatau (Nauch. Issled. Ts. Ob’ed. Inst. Geol. Geofiz. Mineral. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  2. L. V. Alabin, “Genetic Types of the Early Paleozoic Granitoids of the Altai Sayan Folded Area and Their Ore Potential,” in Geochemical Types of Granitoids (Inst. Geokhim. Sib. Otd. Ross. Akad. Nauk, Irkutsk, 1987), pp. 18–33 [in Russian].

    Google Scholar 

  3. J. Arth, “Some Trace Elements in Trondhjemites—Their Implication to Magma Genesis and Paleotectonic Setting,” in Trondhjemites, Dacites and Related rocks, Ed. by F. Barker (Elsevier, Amsterdam, 1979; Mir, Moscow, 1983), pp. 123–132.

    Google Scholar 

  4. J. G. Arth, F. Barker, Z. E. Peterman, and I. Friedman, “Geochemistry of the Gabbro-Diorite-Tonalite-Trondhjemite Suite of the Southwest Finland and Its Implications for the Origin of Tonalitic and Trondhjemite Magmas,” J. Petrol. 19(2), 289–316 (1978).

    Google Scholar 

  5. B. Barbarin, “A Review of the Relationships Between Granitoid Types, Their Origins and Their Geodynamic Environments,” Lithos 46(3), 605–626 (1999).

    Article  Google Scholar 

  6. F. Barker and I. G. Arth, “Generation of Trondhjemitic-Tonalitic Liquids and Archean Bimodal Trondhjemitic-Basalt Suites,” Geology 4, 596–600 (1976).

    Article  Google Scholar 

  7. F. Barker, “Trondhjemite: Definitions, Environment and Hypothesis of Origin,” in Trondhjemites, Dacites and Related rocks, Ed. by F. Barker (Elsevier, Amsterdam, 1979; Mir, Moscow, 1983), pp. 1–12.

    Google Scholar 

  8. R. G. Coleman and Z. E. Peterman, “Oceanic Plagiogranite,” J. Geophys. Res. 80, 1099–1108 (1975).

    Google Scholar 

  9. A. N. Distanova, “Early Paleozoic Granitoid Associations of the Altai Sayan Folded Area: Their Types and Indicator Role in Paleogeodynamic Reconstructions,” Geol. Geofiz. 41(9), 1244–1257 (2000).

    Google Scholar 

  10. M. S. Drummond, M. J. Defant, and P. Kepezhinskas, “Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite-Adakite Magmas,” Trans. R. Soc. Edinb. Earth Sci. 87, 205–215 (1996).

    Google Scholar 

  11. V. I. Grebenshchikova and P. V. Koval, “Geochemistry of Tonalite Formation in the Sumsunur Batholith, Eastern Sayan,” Petrologiya 12(1), 68–83 (2004b) [Petrology 12 (1), 56 (2004b)].

    Google Scholar 

  12. V. I. Grebenshchikova and P. V. Koval, “Plagiogranite Model of the Granite Formation (Yenisei Batholith, Western Sayan),” in Selected Proceedings of Nauchn.-Tekhn. Conference on Geology, Exploration and Prospecting of Mineral Resources and Methods of Geological Studies, Irkutsk, Russia, 2004) (Irk. Gos. Tekhn. Univ., Irkutsk, 2004a), Vyp. 4, pp. 214–218 [in Russian].

    Google Scholar 

  13. V. I. Grebenshchikova, P. V. Koval, E. E. Lustenberg, et al., “Granitoid Batholiths: Arrangement and Processing of Information, Comparative Characteristics,” Geol. Geofiz. 40(8), 1215–1227 (1999).

    Google Scholar 

  14. G. N. Hanson, “Rare Earth Elements in Petrogenetic Studies of Igneous Systems,” Ann. Rev. Earth Planet. Sci., 371–406 (1980).

  15. R. T. Helz, “Phase Relation of Basalts in Their Melting Ranges at \(P_{H_2 O} = 5 Kbar\). Part II. Melt Compositions,” J. Petrol. 17(2), 139–193 (1976).

    Google Scholar 

  16. R. S. James and D. L. Hamilton, “Phase Relations in the System NaAlSi3O8-KAlSi3O8-CaAlSi3O8-SiO2 at 1 Kilobar Water Vapor Pressure,” Contrib. Mineral. Petrol. 21, 11–141 (1969).

    Article  Google Scholar 

  17. L. I. Khodorevskaya and V. A. Zharikov, “Experimental Study of Amphibolite Partial Melting at Different Compositions of the Fluid Phase,” Dokl. Akad. Nauk 359(4), 536–539 (1998) [Dokl. Earth. Sci. 359A (3), 416 (1998)].

    Google Scholar 

  18. L. I. Khodorevskaya, V. M. Shmonov, and V. A. Zharikov, “Granitization of Amphibolite: Experimental Modeling at 750°C and 5 kbar Pressure,” Dokl. Akad. Nauk 383(2), 244–247 (2002) [Dokl. Earth. Sci. 383 (2), 218 (2002)].

    Google Scholar 

  19. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks, Ed. by R. W. Le Maitre (Blackwell, Oxford, 1989; Nedra, Moscow, 1997).

    Google Scholar 

  20. R. G. Coleman and M. M. Donato, “Oceanic Plagiogranites Revisited,” in Trondhjemites, Dacites, and Related Rocks, Ed. by F. Barker (Elsevier, Amsterdam, 1979; Mir, Moscow, 1983), pp. 149–168.

    Google Scholar 

  21. D. S. Korzhinskii, “Granitization as a Magmatic Replacement,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 2, 56–69 (1952).

  22. D. S. Korzhinskii, “Problems of Petrography of the Magmatic Rocks in the Context of Transmagmatic Fluids and Granitization,” in Proceedings of 1th All-Union Petrographic Conference on Magmatism and its Relation with Mineral Resources (Akad. Nauk SSSR, Moscow, 1955), pp. 220–234 [in Russian].

    Google Scholar 

  23. P. V. Koval, Regional Geochemical Analysis of Granitoids (Nauch. Issled. Ts. Ob’ed. Inst. Geol. Geofiz. Mineral. Sib. Otd. Ros. Akad. Nauk, Novosibirsk, 1998) [in Russian].

    Google Scholar 

  24. P. V. Koval, V. I. Grebenshchikova, and E. Kh. Turutanov, “Correlation of Regional Geochemical Zonality of Granitoid Magmatism and Structure of the Lithosphere: Evidence from the Mongolian-Okhotsk Zone,” Dokl. Akad. Nauk 365(2), 245–249 (1999) [Dokl. Earth Sci. 365 (2), 245 (1999)].

    Google Scholar 

  25. M. I. Kuz’min, Geochemistry of Magmatic Rocks in Phanerozoic Mobile Belts (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  26. Yu. A. Kuznetsov, Major Types of Magmatic Associations (Nedra, Moscow, 1964) [in Russian].

    Google Scholar 

  27. F. A. Letnikov, “Granite-Gneiss Domes as an Example of Self-Organized Systems in the Lithosphere,” Dokl. Akad. Nauk 370(1), 67–70 (2000) [Dokl. Earth Sci. 370 (1), 11 (2000)].

    Google Scholar 

  28. F. A. Letnikov, Granitoids of Block-Fault Areas (Nauka, Novosibirsk, 1975) [in Russian].

    Google Scholar 

  29. W. Luth, R. H. Jahns, and O. F. Tuttle, “The Granite System at Pressures of 4 to 10 Kilobars,” J. Geophys. Res. 69(4), 759–774 (1964).

    Article  Google Scholar 

  30. W. B. Nance and S. R. Taylor, “Rare Earth Element Patterns and Crustal Evolution. 1. Australian Post-Archean Sedimentary Rocks,” Geochim. Cosmochim. Acta 40(12), 1539–1551 (1976).

    Article  Google Scholar 

  31. J. T. O’Connor, “A Classification of Quartz Rich Igneous Rocks Based on Feldspar Ratios,” US Geol. Surv. Prof. Paper. 552B, 79–84 (1965).

    Google Scholar 

  32. A. Peccerillo and S. R. Taylor, “Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kaatamon Area, Northern Turkey,” Contrib. Mineral. Petrol. 58(1), 63–81 (1976).

    Article  Google Scholar 

  33. Petrography and Petrology of Magmatic, Metamorphic, and Metasomatic Rocks, Ed. by V. S. Popov and O. A. Bogatikov (Logos, Moscow, 2001) [in Russian].

    Google Scholar 

  34. G. V. Polyakov, V. I. Bognibov, A. P. Krivenko, and P. A. Balykin, “Occurrences of Granitization and Magmatic Replacement in the Yenisei Pluton,” in Problems of the Magmatic Geology of Siberia (Nauka, Novosibirsk, 1978), pp. 21–40 [in Russian].

    Google Scholar 

  35. E. I. Popolitov, T. M. Filosofova, and G. I. Selivanova, “Geochemical Features and Genesis of Plagiogranite Intrusions of the Western Sayan Eugeosynclinal Zone,” Geokhimiya, No. 11, 1636–1642 (1973).

  36. V. K. Purtov, Extended Abstracts of Doctoral Dissertation in Geology and Mineralogy (Inst. Mineral. Uralian Otd. Ross. Akad. Nauk, Yekaterinburg, 1998).

    Google Scholar 

  37. V. K. Purtov, V. N. Anfilogov, and L. G. Egorova, “Interaction of Basalt and Chloride Solutions with Application to the Mechanism of Silicic Magma Formation,” Geokhimiya, No. 10, 1084–1097 (2002) [Geochem. Int. 40 (10), 984(2002)].

  38. A. G. Rublev, “Sr-Nd Systematics of Early Paleozoic Magmatic Rocks in the Central Part of the Altai Sayan Folded Area and the Problem of Their Sources,” in Proceedings of 14th Vinogradov Symposium on Isotope Geochemistry, Moscow, Russia, 2001 (Inst. Geokhim. Ross. Akad. Nauk, Moscow, 2001), pp. 214–215 [in Russian].

    Google Scholar 

  39. S. N. Rudnev, G. A. Babin, A. G. Vladimirov, et al., “Geological Setting, Age, and Geochemical Model of the Formation of Island-Arc Plagiogranitoids of the Western Sayan,” Geol. Geofiz. 46(2), 170–187 (2005).

    Google Scholar 

  40. S. N. Rudnev, G. A. Babin, A. G. Vladimirov, et al., “Composition, Age, and Geodynamic Interpretation of Plagiogranites of the Mainskii Complex, Western Sayan,” in Proceedings of Conference of Geodynamic Evolution of Lithosphere of Central Asian Belt (from Ocean to Continent), Irkutsk, Russia (Irk. Nauch Ts. Sib Otd. Ross. Akad. Nauk, Irkutsk, 2003), pp. 209–212 [in Russian].

    Google Scholar 

  41. U. B. Saiz, “Palingenic Trondhjemites,” in Proceedings of the 27th International Geological Congress. Petrology. Moscow, Russia, 1984 (Nauka, Moscow, 1984), pp. 192–201 [in Russian].

    Google Scholar 

  42. G. I. Samarkin, E. Ya. Samarkina, and B. A. Kaleganov, “Two Stages in the Development of Plagiogranitoids in the Western Mugodzhary Volcanic Zone (Southern Urals),” Dokl. Akad. Nauk 380(1), 98–102 (2001) [Dokl. Earth Sci. 380 (1), 768 (2001)].

    Google Scholar 

  43. R. S. Selbekk, C. J. Bray, and E. T. C. Spooner, “Formation of Tonalite in Island Arcs by Seawater-Induced Anatexis of Mafic Rocks: Evidence from the Lungen Magmatic Complex, North Norwegian Caledonides,” Chem. Geol. 182(1), 69–84 (2002).

    Article  Google Scholar 

  44. V. N. Smyshlyaev, “Principal Characteristics of the Geological Structures of the Mainskii Plagiogranite Intrusion, Western Sayan,” Izv. Tomsk. Politekhn. Inst. 90, 69–84 (1958).

    Google Scholar 

  45. V. N. Smyshlyaev, “Plagiogranite Intrusive Complex of the Northern Slope of the Western Sayan,” in Magmatic Complexes of the Altai-Sayan Folded Area (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1963), pp. 92–106 [in Russian].

    Google Scholar 

  46. S.-S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Ocean Basalts: Implications for Mantle Composition and Processes,” in Magmatism in Ocean Basins, Eds. A. D. Saunders and M. I. Norry, Geol. Soc. Spec. Publ. London, 42, 313–345 (1989).

  47. L. V. Tauson, Geochemical Types and Ore Potential of the Granitoids (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  48. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985; Mir, Moscow, 1988), p. 312.

    Google Scholar 

  49. G. Tischendorf and W. Palchen, “Zur Klassifikation von Granitoiden,” Z. Geol. Wiss. 13(5), 615–627 (1985).

    Google Scholar 

  50. N. V. Tsukanov, M. V. Luchitskaya, S. G. Skolotnev, et al., “New Data on the Structure and Composition of Gabbroids and Plagiogranites from the Late Cretaceous Ophiolitic Complex of the Kamchatsky Mys Peninsula (Eastern Kamchatka),” Dokl. Akad. Nauk 397(2), 243–246 (2004) [Dokl. Earth Sci. 397 (5), 632 (2004)].

    Google Scholar 

  51. O. M. Turkina, “Tonalite-Trondhjemite Complexes of Suprasubduction Settings: Evidence from Late Riphean Plagiogranitoids of the Southwestern Margin of the Siberian Platform,” Geol. Geofiz. 43(5), 420–433 (2002).

    Google Scholar 

  52. O. F. Tuttle and N. L. Bowen, “Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8-KAlSi3O8-SiO2-H2O,” Mem. Geol. Soc. Am. 74, 153 (1958).

    Google Scholar 

  53. V. V. Yarmolyuk, V. I. Kovalenko, E. B. Sal’nikova, et al., “Tectono-Magmatic Zoning, Magma Sources, and Geodynamics of the Early Mesozoic Mongolia-Transbaikalia Province,” Geotektonika, No. 4, 42–63 (2002) [Geotectonics 36 (4), 293–314 (2002)].

  54. V. A. Zharikov, “Some Aspects of the Problems of the Granite Formation,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 4, 3–12 (1996).

  55. V. A. Zharikov, “Problems of the Granite Formation,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 6, 3–14 (1987).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Grebenshchikova, P.V. Koval, 2006, published in Petrologiya, 2006, Vol. 14, No. 3, pp. 304–318.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grebenshchikova, V.I., Koval, P.V. Petrology of plagiogranites of the Yenisei Batholith, Western Sayan. Petrology 14, 284–298 (2006). https://doi.org/10.1134/S0869591106030052

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591106030052

Keywords

Navigation