Skip to main content
Log in

Microseisms as a Tool for Geophysical Research. A Review

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

The research in seismic ambient noise as a tool for geophysical studies must primarily rely on the space-time characteristics of the noise itself. What is important in this research is to characterize the distribution of noise sources both over frequency and in energy content. The present review considers the main mechanisms for the generation of microseisms, including primary and secondary microseisms (0.05–0.3 Hz), low frequency oscillations (0.2–50 mHz), high frequency oscillations (2–60 Hz), and lake-generated microseisms (0.5–2 Hz). We also describe the most popular procedures in use for the processing and analysis of continuous seismic ambient noise arrivals; we demonstrate a wide range of geophysical problems based on recordings of microseismic ground motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Accardo, N.J., Gaherty, J.B., Shillington, D.J., Ebinger, C.J., Nyblade, A.A., Mbogoni, G.J., Chindandali, P.R.N., Ferdinand, R.W., Mulibo, G.D., Keir, D., Scholz, C., Selway, K., O’Donnell, J.P., Tepp, G., Gallacher, R., Mtelela, K., Salima, J., Mruma, and A. Kamihanda, G., Surface wave imaging of the weakly extended Malawi Rift from ambient-noise and teleseismic Rayleigh waves from onshore and lake-bottom seismometers, Geophysical Journal International, 2017, vol. 209, no. 3, pp. 1892–1905. https://doi.org/10.1093/gji/ggx133

  2. Adushkin, V.V., Spivak, A.A., and Kharlamov, V.A., The influence of lunar-solar tides on the variations in geophysical fields at the crust-atmosphere interface, Fizika Zemli, 2012, no. 2, pp. 14–26.

  3. Akbar, M.F., Afnimar, Nugraha, A.D., Ramadhan, D., and Mulyanagara G., Application and noise analysis of passive seismic method for hydrocarbon reservoir, Proc. HAGI-IAGI Joint Convention Medan, 2013.

  4. Aleshin, A.S., Fundamental aspects of seismic microzonation, Seismostoikoe Stroitelstvo. Bezopasnost Sooruzhenii, 2017, no. 4, pp. 8–17.

  5. Ananko, M.Yu. and Smirnov, V.B., Generation of high frequency seismic noise by surface wind excitation, Vulkanol. Seismol., 1994, no. 4/5, pp. 205–214.

  6. Anthony, R.E., Ringler, A.T., and Wilson, D.C., The widespread influence of Great Lakes microseisms across the Midwestern United States revealed by the 2014 polar vortex, Geophys. Res. Lett., 2018, vol. 45, pp. 3436–3444. https://doi.org/10.1002/2017GL076690

    Article  Google Scholar 

  7. Ardhuin, F., Large-scale forces under surface gravity waves at a wavy bottom: A mechanism for the generation of primary microseisms, Geophys. Res. Lett., 2018, vol. 45. https://doi.org/10.1029/2018GL078855

  8. Ardhuin, F., Stutzmann, E., Schimmel, M., and Mangeney, A., Ocean wave sources of seismic noise, J. Geophys. Res., 2011, vol. 116, p. C09004. https://doi.org/10.1029/2011JC006952

    Article  Google Scholar 

  9. Ardhuin, F., Balanche, A., Stutzmann, E., and Obrebski, M., From seismic noise to ocean wave parameters: General methods and validation, J. Geophys. Res., 2012, vol. 117, p. C05002. https://doi.org/10.1029/2011JC007449

    Article  Google Scholar 

  10. Arseniev, S.A., Rykunov, L.N., and Shelkovnikov, N.K., Nonlinear generation of the second harmonic with a long wave on a shelf, Dokl. Akad. Nauk SSSR, 1990, vol. 314, no. 4, pp. 821–824.

    Google Scholar 

  11. Arseniev, S.A. and Shelkovnikov, N.K., The origin of microseisms and their effects on the Earth’s crust, Vestnik MGU, Seriya 3, Fizika, Astronomiya, 2006, no. 2, pp. 62–65.

  12. Arutyunov, S.L., Kuznetsov, O.L., Karnaukhov, S.M., et al., ANCHAR—New principles of exploration geophysics, in Mezhdunarodnaya geofizicheskaya konferentsiya i vystavka EAGO (Intern. Geophys. Conf. and an EAGO Exposition), a collection of abstracts SEG, EAGE, Moscow, 1997.

  13. Averbukh, A.G., Gogonenkov, G.N., Grinshpun, A.V., et al., Anomalies of kinematic and dynamic characteristics of waves that have been reflected from oil-and-gas deposits, Prikl. Geofiz., Moscow: Nedra, 1978, no. 95, pp. 62–75.

    Google Scholar 

  14. Avsyuk, Yu.N., Prilivnye sily i prirodnye protsessy (Tidal Forces and Natural Processes), Moscow: OIFZ RAN, 1996.

  15. Bard, P., Microtremor measurements: A tool for the effect estimation? in The Effects of Surface Geology on Seismic Motion—Recent Progress and New Horizon on ESG Study, Irikura, K., Kudo, K., Okada, H., and T. Sasatani, T., Eds., Rotterdam: Balkema, 1999, no. 3, pp. 1251–1279.

  16. Benjamin, T.B. and Feir, J.E., The disintegration of wave trains on deep water. Part 1: Theory, J. Fluid Mech., 1967, vol. 27, pp. 417–430. https://doi.org/10.1017/S002211206700045X

    Article  Google Scholar 

  17. Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M., and Yang, Y., Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 2007, vol. 169, pp. 1239–1260. https://doi.org/10.1111/j.1365-270246X.2007.03374.x

  18. Berezhnoi, D.V., Biryaltsev, E.V., Biryaltseva, T.E., et al., The analysis of spectral characteristics of microseisms as a tool for studying geological structure, in Sb. NII matematiki i mekhaniki Kazanskogo universiteta (A Collection of Papers, Research Institute of Mathematics and Mechanics, Kazan University), Kazan: KGU, 2008, pp. 360–386.

  19. Besedina, A.N., An analysis of parameters in the low frequency background microseisms in Kamchatka, in Problemy kompleksnogo geofizicheskogo monitoringa Dalnego Vostoka Rossii (Problems in Multidisciplinary Geophysical Monitoring of the Russian Far East) [Web resources], Proc. 7th scientific conf., Chebrov, D.V., Editor-in-Chief, September 29–October 7, 2019, Petropavlovsk-Kamchatsky, Obninsk: FITs EGS RAS, 2019, pp. 267–270.

  20. Besedina, A.N., Batukhtin, I.V., and Ostapchuk, A.A., An analysis of parameters in microseismic ground motion recorded in the central East European Platform, in Dinamicheskie protsessy v geosferakh (Dynamic Processes in the Geospheres), issue 9, a collection of research papers, IDG RAS, Moscow: GEOS, 2017, pp. 43‒50.

  21. Besedina, A.N., Kishkina, S.B., Kocharyan, G.G., et al., An analysis of background microseisms before and after large earthquakes: The Chilean subduction zone, Fizika Zemli, 2020, no. 2, pp. 10–20.

  22. Besedina A.N. Study of microseismic ambient noise in mine of Korobkovskoe ore deposit, AIP Conference Proceedings, 2020, vol. 2310, p. 020029. https://doi.org/10.1063/5.0034312

  23. Bonchkovsky, V.F., Microseisms and their origin, Tr. Seismol. In-ta AN SSSR, 1946, no. 120, pp. 15–21.

  24. Bonnefoy-Claudet, S., Cotton, F., and Bard, P.-Y., The nature of noise wavefield and its applications for site effects studies: A literature review, Earth-Science Reviews, 2006a, vol. 79, pp. 205–227.

    Article  Google Scholar 

  25. Bonnefoy-Claudet, S., Cornou, C., Bard, P.-Y., Cotton, F., Moczo, P., Kristek, J., and Feah, D., H/V ratio: A tool for site effects evaluation. Results from 1-D noise simulations, Geophysical J. International, 2006b, vol. 167, no. 2, pp. 827–837. https://doi.org/10.1111/j.1365-246X.2006.03154.x

    Article  Google Scholar 

  26. Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N.M., Nadeau, R.M., and Larose, E., Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations, Science, 2008a, vol. 321, pp. 1478–1481.

    Article  Google Scholar 

  27. Brenguier, F., Shapiro, N.M., Campillo, M., Ferrazzini, V., Dupute, Z., Coutant, O., and Nercessian, A., Towards forecasting volcanic eruptions using seismic noise, Nature Geoscience, 2008b, vol. 1, pp. 126–130.

    Article  Google Scholar 

  28. Brenguier, F., Campillo, M., Takeda, T., Aoki, Y., Shapiro, N. M., Briand, X., Emoto, K., and Miyake, H., Mapping pressurized volcanic fluids from induced crustal seismic velocity drops, Science, 2014, vol. 345, no. 6192, pp. 80–82. https://doi.org/10.1126/science.1254073

    Article  Google Scholar 

  29. Brenguier, F., Boué, P., Ben-Zion, Y., Vernon, F., Johnson, C.W., Mordret, A., et al., Train traffic as a powerful noise source for monitoring active faults with seismic interferometry, Geophys. Res. Lett., 2019, vol. 46, pp. 9529–9536. https://doi.org/10.1029/2019GL083438

    Article  Google Scholar 

  30. Campillo, M. and Paul, A., Long-range correlations in the diffuse seismic coda, Science, 2003, vol. 299, pp. 547–549.

    Article  Google Scholar 

  31. Campillo, M., Roux, P., and Shapiro, N.M., Correlation of seismic ambient noise to image and to monitor the solid Earth, in Encyclopedia of Solid Earth Geophysics, Gupta, Harsh K., Ed., Dordrecht: Springer Science + Business Media B.V., 2011. https://doi.org/10.1007/978-90-481-8702-7

  32. Carchedi, C.J.W., Gaherty, J.B., Webb, S.C., and Shillington, D.J., Investigating short-period lake-generated microseisms using a broadband array of onshore and lake-bottom seismometers, Seismol. Res. Lett., 2022, vol. 93, pp. 1585–1600. https://doi.org/10.1785/0220210155

    Article  Google Scholar 

  33. Carter, J.A., Barstow, N., Pomeroy, P.W., Chael, E.P., and Leahy, P.J., High-frequency seismic noise as a function of depth, Bull. Seismol. Soc. Am., 1991, vol. 81, no. 4, pp. 1101–1114.

    Article  Google Scholar 

  34. Chen, J.H., Froment, B., Liu, Q.Y., and Campillo, M., Distribution of seismic wave speed changes associated with the 12 May 2008 M w 7.9 Wenchuan earthquake, Geophys. Res. Lett., 2010, vol. 37, p. L18302. https://doi.org/10.1029/2010GL044582

    Article  Google Scholar 

  35. Clements, T. and Denolle, M.A., Tracking groundwater levels using the ambient seismic field, Geophys. Res. Lett., 2018, vol. 45, pp. 6459–6465. https://doi.org/10.1029/2018GL077706

    Article  Google Scholar 

  36. Davy, C., Stutzmann, E., Barruol, G., Fontaine, F.R., and Schimmel, M., Sources of secondary microseisms in the Indian Ocean, Geophys. J. Int., 2015, vol. 202, pp. 1180–1189.

    Article  Google Scholar 

  37. Dubyansky, V.I., Roslov, Yu.V., and Silkin, K.Yu., Preliminary results from a study of information contained in microseismic noise recorded in reflection common-depth-point seismograms acquired in shallow shelf conditions (Ob R. delta), Vestnik MGU, Seriya: Geologiya, 2009, no. 1, pp. 127–133.

  38. Durand, S., Montagner, J.P., Roux, P., Brenguier, F., Nadeau, R.M., and Ricard, Y., Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake, Geophys. Res. Lett., 2011, vol. 38, p. L13303. https://doi.org/10.1029/2011GL047875

    Article  Google Scholar 

  39. Fernandez, L.M. and Brandt, M.B.C., The reference spectral noise ratio method to evaluate the seismic response of a site, Soil Dynamics and Earthquake Engineering, 2000, vol. 20, nos. 5–8, pp. 381–388. https://doi.org/10.1016/s0267-7261(00)00086-5

    Article  Google Scholar 

  40. Flinn, E.A., Signal analysis using rectilinearity and direction of particle motion, Proc. IEEE, 1965, vol. 53, no. 12, pp. 1874–1876.

    Article  Google Scholar 

  41. Fukao, Y., Nishida, K., and Kobayashi, N., Seafloor topography, ocean infragravity waves, and background Love and Rayleigh waves, J. Geophys. Res., 2010, vol. 115, p. B04302. https://doi.org/10.1029/2009JB006678

    Article  Google Scholar 

  42. Gaisky, V.N., Statisticheskie issledovaniya seismicheskogo rezhima (Statistical Studies in Seismic Regime), Moscow: Nauka, 1970.

  43. Galperin, E.M., Vinnik, L.P., and Petersen, N.V., On modulation of high frequency seismic noise through tidal deformation of the lithosphere, Izv. AN SSSR, Ser. Fizika Zemli, 1987, no. 12, pp. 102–109.

  44. Galperin, E.I., Sitnikov, A.V., Kvetinsky, S.I., et al., Experience in and result from an experimental study of high frequency seismic noise, Izv. AN SSSR, Ser. Fizika Zemli, 1989, no. 10, pp. 99–109.

  45. Gassenmeier, M., Sens-Schönfelder, C., Delatre, M., and Korn, M., Monitoring of environmental influences on seismic velocity at the geological storage site for CO2 in Ketzin (Germany) with ambient seismic noise, Geophys. J. Int., 2015, vol. 200, no. 1, pp. 524–533. https://doi.org/10.1093/gji/ggu413

    Article  Google Scholar 

  46. Golitsyn, B.B., On microseismic ground motion, Izvestiya Imperatorskoi Akademii Nauk, Ser. VI, 1909, vol. 3, no. 1, pp. 59–68. Delivered at a sitting of the Physico-Mathematical Section, December 10, 1908.

  47. Golitsyn, B.B., Izbrannye trudy (Selected Works), vol. 2, Seismologiya (Seismology), Moscow: AN SSSR, 1960.

  48. Gómez-García, C., Brenguier, F., Boué, P., Shapiro, N.M., Droznin, D.V., Droznina, S.Ya., Senyukov, S.L., and Gordeev, E.I., Retrieving robust noise-based seismic velocity changes from sparse data sets: synthetic tests and application to Klyuchevskoy volcanic group (Kamchatka), Geophys. J. Int., 2018, vol. 214, no. 2, pp. 1218–1236. https://doi.org/10.1093/gji/ggy190

    Article  Google Scholar 

  49. Gorbatikov, A.V. and Barabanov, V.L., Experience in using microseisms for evaluating the condition of the upper crust, Fizika Zemli, 1993, no. 7, pp. 85–90.

  50. Gorbatikov, A.V. and Stepanova, M.Yu., Studies of statistical parameters and stationary properties of low-frequency seismic signals, Fizika Zemli, 2008, no. 1, pp. 57–67.

  51. Gorbatikov, A.V. and Tsukanov, A.A., Modeling Rayleigh waves near scattering velocity inhomogeneities. A study of the potential of microseismic sounding, Fizika Zemli, 2011, no. 4, pp. 96–112.

  52. Gorbatikov, A.V., Stepanova, M.Yu., and Korablev, G.E., Patterns in the generation of microseismic fields due to local geologic inhomogeneities and probing of the Earth with the help of microseisms, Fizika Zemli, 2008, no. 7, pp. 66–84.

  53. Gorbatikov, A.V., Stepanova, M.Yu., and Tsukanov, A.A., A new technology of microseismic sounding for studying the deep structure of oil-and-gas deposits, Neft. Khoz., 2010, no. 6, pp. 15–17.

  54. Grafov, B.M., Arutyunov, S.L., Kazarinov, V.E., et al., The analysis of geoacoustic radiation from a low frequency deposit using the ANCHAR technology, Geofizika, 1996, no. 5, pp. 24–28.

  55. Gualtieri, L., Stutzmann, E., Capdeville, Y., Ardhuin, F., Schimmel, M., Mangeney, A., and Morelli, A., Modelling secondary microseismic noise by normal mode summation, 2013, vol. 193, pp. 1732–1745.

  56. Gualtieri, L., Bachmann, E., Simons, F.J., and Tromp, J., The origin of secondary microseism Love waves, Proc. Natl. Acad. Sci. USA, 2020, vol. 117, no. 47, pp. 29504–29511. https://doi.org/10.1073/pnas.2013806117

    Article  Google Scholar 

  57. Harms, J., Acernese, F., Barone, F., Bartos, I., Beker, M., van den Brand, J.F.J., and Wand, V., Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota, Classical and Quantum Gravity, 2010, vol. 27, no. 22, p. 225011. https://doi.org/10.1088/0264-9381/27/22/225011

  58. Hasselmann, K., A statistical analysis of the generation of microseisms, Rev. Geophys., 1963, vol. 1, pp. 177–210.

    Article  Google Scholar 

  59. Hillers, G., Ben-Zion, Y., Campillo, M., and Zigone, D., Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise, Geophysical J. International, 2015, vol. 202, no. 2, pp. 920–932. https://doi.org/10.1093/gji/ggv151

    Article  Google Scholar 

  60. Hobiger, M., Wegler, U., Shiomi, K., and Nakahara, H., Coseismic and postseismic elastic wave velocity variations caused by the 2008 Iwate-Miyagi Nairiku earthquake, Japan, J. Geophys. Res. Solid Earth, 2012, vol. 117, pp. 1–19. https://doi.org/10.1029/2012JB009402

    Article  Google Scholar 

  61. Hobiger, M., Wegler, U., Shiomi, K., and Nakahara, H., Coseismic and post-seismic velocity changes detected by Passive Image Interferometry: comparison of one great and five strong earthquakes in Japan, Geophys. J. Int., 2016, vol. 205, pp. 1053–1073.

    Article  Google Scholar 

  62. Hutt, C.R. and Ringler, A., A Summary of STS-2 Low-Noise Installation Methods Tested at the USGS Albuquerque Seismological Laboratory, 2009.

  63. Ikeda, T. and Tsuji, T., Temporal change in seismic velocity associated with an offshore M w 5.9 Off-Mie earthquake in the Nankai subduction zone from ambient noise cross-correlation, Prog. Earth Planet. Sci., 2018, vol. 5, no. 62.

    Article  Google Scholar 

  64. Kanasewich, E.R., Time Sequence Analysis in Geophysics, Edmonton: The University of Alberta Press, 1973, pp. 274–296.

    Google Scholar 

  65. Kapustyan, N.K., Man-induced microseisms—A new tool for geodynamic monitoring, in Geodinamika i tekhnogenez (Geodynamics and Human Impact), Yaroslavl, 2000, pp. 64–67.

    Google Scholar 

  66. Kapustyan, N.K. and Yudakhin, F.N., Seismicheskie issledovaniya tekhnogennykh vozdeistvii na zemnuyu koru i ikh posledstvii (Seismic Studies of Man-Induced Impact on the Earth’s Crust and of Their Consequences), Yekaterinburg, 2007.

    Google Scholar 

  67. Karryev, B.S., A Study of High Frequency Seismic Noise in the Ashkhabad Seismic Area, Cand. Sci. (Phys.–Math.) Dissertation, Moscow, Institute of Physics of the Earth USSR Acad. Sci., 1984.

  68. Kedar, S., Longuet-Higgins, M., Graham, F.W.N., Clayton, R., and Jones, C., The origin of the deep ocean microseisms in the North Atlantic Ocean, Proc. R. Soc. Lond. Ser. A, 2008, vol. 464(2091), pp. 777–793.

  69. Kedrov, O.K., Seismicheskie metody kontrolya yadernykh ispytanii (Seismic Methods for Nuclear Test Verification), Moscow: IFZ RAN, Saransk, 2005.

  70. Kerman, B.R. and Mereu, R.F., Wind-induced microseisms from Lake Ontario, Atmosphere–Ocean, 1993, vol. 31, no. 4, pp. 501–516. https://doi.org/10.1080/07055900.1993.9649483

    Article  Google Scholar 

  71. Khogoev, E.A., Khogoeva, E.E., and Shemyakin, M.L., On the microseismic response of the medium and its uses for hydrocarbon exploration, Geol. Mineral.-Syr. Res. Sib., 2019, vol. 3, no. 39, pp. 80–84.

    Google Scholar 

  72. Khogoeva, E.E. and Khogoev, E.A., Possibilities of integration for microseismic analysis with other geophysical techniques as applied to a gas condensate deposit, Interexpo GEO-Siberia, 2021. https://doi.org/10.33764/2618-981X-2021-2-3-55-60

    Book  Google Scholar 

  73. Kishkina, S.B., Background microseisms as observed in different areas in Russia, in Sbornik nauchnykh trudov IDG RAN “Geofizicheskie protsessy v nizhnikh i verkhnikh obolochkakh Zemli” (A Collection of Works by IDG RAS Researchers “Geophysical Processes in the Lower and Upper Shells of the Earth”), 2003, Book 1, pp. 142–152.

  74. Kishkina, S.B. and Spivak, A.A., The manifestation of resonant properties of the crust in microseismic ground motion, Dokl. Akad. Nauk, 2003, vol. 392, no. 4, pp. 543–545.

    Google Scholar 

  75. Kocharyan, G.G., Geomekhanika razlomov (Fault Geomechanics), Moscow: GEOS, 2016.

  76. Kocharyan, G.G. and Fedorov, A.E., On the mechanics of the seismic process in a blocky geophysical medium, Dokl. Akad. Nauk SSSR, 1990, vol. 315, no. 6, pp. 1345–1349.

    Google Scholar 

  77. Kocharyan, G.G. and Kabychenko, N.V., Manifestations of block motions in long period seismic noise, in Sbornik nauchnykh trudov IDG RAN “Geofizicheskie protsessy v nizhnikh i verkhnikh obolochkakh Zemli” (A Collection of Works by IDG RAS Researchers “Geophysical Processes in the Lower and Upper Shells of the Earth”), 2003, Book 1, pp. 98–107.

  78. Kocharyan, G.G. and Ostapchuk, A.A., Changes in thestiffness of a fault zone during a seismic cycle, Dokl. Akad. Nauk, 2011, vol. 441, no. 3, pp. 384–387.

    Google Scholar 

  79. Kocharyan, G.G. and Rodionov, V.N., On the nature of tectonic forces, Dokl. Akad. Nauk SSSR, 1988, vol. 302, no. 2, pp. 304–305.

    Google Scholar 

  80. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (The Dynamics of Deformation in Blocky Rock Massifs), Moscow: IKTs Akademkniga, 2003.

  81. Kocharyan, G.G., Ostapchuk, A.A., and Pavlov, D.V., Traces of laboratory earthquake nucleation in the spectrum of ambient noise, Scientific Reports, 2018, no. 8, p. 10 764. https://doi.org/10.1038/s41598-018-28976-9

  82. Kocharyan, G.G., Loktev, D.N., Ryakhovsky, I.A., and Sanina, I.A., The unique scientific installation “Mikhnevo Middle Latitude Complex of Geophysical Observation” Geodin. Geofiz., 2022, vol. 13, no. 2, pp. 1–6. https://doi.org/10.5800/GT-2022-13-2-0590

  83. Kolosova, E.A., Lukk, A.A., Serova, O.A., and Sidorin, A.Ya., Natural and manmade sources of trigger activity for seismicity and seismic noise, Nauka Tekhnol. Razrab., 2015, vol. 94, no. 4, pp. 30–43.

    Google Scholar 

  84. Koper, K.D. and Hawley, V.L., Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States, Earthquake Science, 2010, vol. 23, no. 5, pp. 439–447. https://doi.org/10.1007/s11589-010-0743-5

  85. Koper, K.D., de Foy, B., and Benz, H., Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991–2007, J. Geophys. Res., 2009, vol. 114(B10), pp. B10310. https://doi.org/10.1029/2009JB006307

    Article  Google Scholar 

  86. Korol, S.A., Sankov, A.V., and Dobrynina, A.A., The relationship between microseismic noise and earthquakes, in Razlomoobrazovanie v litosfere i soputstvuyushchie protsessy: tektonofizicheskii analiz (Faulting and Related Processes in the Lithosphere: A Tectonophysical Analysis), Abstracts of reports at the All-Union conference devoted to the memory of Prof. S.I. Sherman, Irkutsk, 2021, pp. 193–194.

  87. Koroleva, T.Yu., Maps showing the distribution of Rayleigh wave velocity in the Caucasus based on data supplied by the CNET Caucasian network, Ross. Seismol. Zhurn., 2020, vol. 2, no. 3, pp. 70–77. https://doi.org/10.35540/2686-7907.2020.3.06

  88. Koroleva, T.Yu., Yanovskaya, T.B., and Patrusheva, S.S., The use of seismic noise for determining the structure of shallow layers of the Earth, Izv. Ross. Akad. Nauk, Fiz. Zemli, 2009, no. 5, pp. 3–14.

  89. Kugaenko, Yu.A., Saltykov, V.A., Sinitsyn, V.I., and Shishkin, A.A., First results froma study of seismic noise on Shikotan Island based on long-term observations, Tikh. Geol., 2008, vol. 27, no. 3, pp. 33–43.

    Google Scholar 

  90. Kuznetsov, O.L., Chirkin, I.A., Radvan, A.A., Rizanov, E.G., and Koligaev, S.O., Seismic studies in explored deposits of oil and gas (industrial seismometry), Nauchno-Tekh. Vestn. KAROTAZHNIK, 2016, vol. 12(270), pp. 39–66.

    Google Scholar 

  91. Lambert, M.A., Schmalholz, S.M., Saenger, E.H., and Steiner, B., Low-frequency microtremor anomalies at an oil and gas field in Voitsdorf, Austria, Geophysical Prospecting, 2009, vol. 57, pp. 393–411.

    Article  Google Scholar 

  92. Landès, M., Hubans, F., Shapiro, N.M., Paul, A., and Campillo, M., Origin of deep ocean microseisms by using teleseismic body waves, J. Geophys. Res., 2010, vol. 115, p. B05302.

    Article  Google Scholar 

  93. Larose, E., Carriere, S., Voisin, C., Bottelin, P., Baillet, L., Gueguen, P., et al., Environmental seismology: What can we learn on earth surface processes with ambient noise?, J. Applied Geophysics, 2015, vol. 116, pp. 62–74. https://doi.org/10.1016/j.jappgeo.2015.02.001

    Article  Google Scholar 

  94. Lecocq, T., Longuevergne, L., Pedersen, H.A., Brenguier, F., and Stammler, K., Monitoring ground water storage at mesoscale using seismic noise: 30 years of continuous observation and thermo-elastic and hydrological modeling, Sci. Rep., 2017, vol. 7, no. 1, p. 14241.

    Article  Google Scholar 

  95. Lermo, J. and Chavez-Garcia, F.J., Site effect evaluation using spectral ratios with only one station, Bull. Seism. Soc. Am., 1993, vol. 83, no. 5, pp. 1574–1594.

    Article  Google Scholar 

  96. Li, H., Qu, K., Rong, W., Tuo, X., Lu, J., Wang, R., Wang, X., and Courtois, J., PolarGUI: A MATLAB-based tool for polarization analysis of the three-component seismic data using different algorithms, Seismol. Res. Lett., 2021, vol. XX, pp. 1–11. https://doi.org/10.1785/0220200439

    Article  Google Scholar 

  97. Liseikin, A.V. and Seleznev, V.S., The most important results from research activities at the National Seismological Centre, Geophysical Survey, Russian Academy of Sciences in 2016–2020 (seismic studies), Ross. Seismol. Zhurn., 2021, vol. 3, no. 1, pp. 54–74. https://doi.org/10.35540/2686-7907.2021.1.04

    Article  Google Scholar 

  98. Longuet-Higgins, M.S., A theory of the origin of microseisms, Philosophical Transactions of the Royal Society of London A. Mathematical, Physical and Engineering Sciences, 1950, vol. 243(857), pp. 1–35. https://doi.org/10.1098/rsta.1950.0012

    Article  Google Scholar 

  99. Lynch, J., The Great Lakes, a source of two-second frontal microseisms, EOS, Transactions of the American Geophysical Union, 1952, vol. 33, no. 3, pp. 432–434. https://doi.org/10.1029/TR033i003p00432

    Article  Google Scholar 

  100. Lyubushin, A.A., Synchronization trends and rhythms of multifractal parameters of the field of low-frequency microseisms, Izv. Phys. Solid Earth, 2009, no. 45, pp. 381–394.

  101. Lyubushin, A.A., The March 11, 2011 seismic disaster in Japan. A long-term forecast based on low frequency microseisms, Geofiz. Prots. Biosf., 2011, vol. 10, no. 1, pp. 9–35.

    Google Scholar 

  102. Lyubushin, A.A., The relationship between the low frequency seismic noise fields in Japan and in California, Fizika Zemli, 2016, no. 6, pp. 28–38.

  103. Lyubushin, A., Low-frequency seismic noise properties in the Japanese Islands, Entropy, 2021, vol. 23, no. 4, p. 474. https://doi.org/10.3390/e23040474

    Article  Google Scholar 

  104. Lyubushin, A., Investigation of the global seismic noise properties in connection to strong earthquakes, Frontiers in Earth Science, 2022, vol. 10. https://doi.org/10.3389/feart.2022.905663

  105. Lyubushin, A.A., Malugin, V.A., and Kazantseva, O.S., Monitoring of tidal variations in underground water level in a group of aquifers, Fizika Zemli, 1997, no. 4, pp. 52–64.

  106. Mao, S., Campillo, M., van der Hilst, R.D., Brenguier, F., Stehly, L., and Hillers, G., High temporal resolution monitoring of small variations in crustal strain by dense seismic arrays, Geophys. Res. Lett., 2019, vol. 46, pp. 128–137. https://doi.org/10.1029/2018GL079944

    Article  Google Scholar 

  107. McNamara, D.E. and Buland, R.P., Ambient noise levels in the continental United States, Bull. Seismol. Soc. Amer., 2004, vol. 94, no. 4, pp. 1517. https://doi.org/10.1785/012003001

    Article  Google Scholar 

  108. Meier, U., Shapiro, N.M., and Brenguier, F., Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise, Geophys. J. Int., 2010, vol. 181(2), pp. 985–996.

    Google Scholar 

  109. Meshcheryakova, V.A. and Gerasimov, A.A., A study of spectral characteristics of noise and its effects on the recording capabilities of the Karelia seismological network for earthquakes, Vestnik MGU, Geologiya, 2019, no. 2, pp. 100–106.

  110. Mikhailova, N.N. and Komarov, I.I., The spectral characteristics of seismic noise as inferred from recordings of the Kazakhstan monitoring stations, Vestnik NYaTs RK, 2006, vol. 2, pp. 19–26.

    Google Scholar 

  111. Molchan, G., Structure of optimal strategies in earthquake prediction, Tectonophysics, 1991, vol. 193, pp. 267–276.

    Article  Google Scholar 

  112. Molchan, G.M., Earthquake Prediction Strategies: A Theoretical Analysis, in Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, Keilis-Borok, V.I. and Soloviev, A.A., Eds., Springer Series in Synergetics, Berlin, Heidelberg: Springer, 2003. https://doi.org/10.1007/978-3-662-05298-3_5

  113. Molchan, G., Space-time earthquake prediction: the error diagrams, Pure Appl. Geophys., 2010, vol. 167, nos. 8–9, pp. 907–917.

    Article  Google Scholar 

  114. Monakhov, F.I., Nizkochastotnyi seismicheskii shum Zemli (The Earth’s Low Frequency Seismic Noise), Moscow: Nauka, 1977.

  115. Monakhov, F.I., Pasechnik, I.P., and Shebalin, N.V., Seismicheskie i mikroseismicheskie nablyudeniya na Sovetskikh stantsiyakh v period MGG (Seismic and Microseismic Observations at Soviet Stations during the IGY), Moscow: AN SSSR, 1959.

  116. Moschetti, M.P., Ritzwoller, M.H., and Lin, F.C., Seismic evidence for widespread crustal deformation caused by extension in the western USA, Nature, 2010, vol. 464, pp. 885–889. https://doi.org/10.1038/nature08951

    Article  Google Scholar 

  117. Murphy, A.J. and Savino, J.M., A comprehensive study of long-period (20 to 200 seconds) Earth noise at the high-gain worldwide seismograph stations, Bull. Seism. Soc. Am., 1975, vol. 65, no. 6, pp. 1827–1862.

    Article  Google Scholar 

  118. Nakamura, Y., A method for dynamic characteristic estimation of subsurface using microtremor on the ground surface, Quarterly Report of Railway Technical Research Institute, 1989, vol. 30, no. 1, pp. 25–33.

    Google Scholar 

  119. Nishida, K., Earth’s background free oscillations, Ann. Rev. Earth Planet. Sci., 2013, vol. 41, no. 1, pp. 719–740. https://doi.org/10.1146/annurev-earth-050212-124020

    Article  Google Scholar 

  120. Nishida, K., Kawakatsu, H., Fukao, Y., and Obara, K., Background Love and Rayleigh waves simultaneously generated at the Pacific Ocean floors, Geophys. Res. Lett., 2008, vol. 35, p. L16307. https://doi.org/10.1029/2008GL034753

    Article  Google Scholar 

  121. Niu, F., Silver, P.G., Daley, T.M., Cheng, X., and Majer, E.L., Preseismic velocity changes observed from active source monitoring at the Parkfeld SAFOD drill site, Nature, 2008, vol. 454, pp. 204–208.

    Article  Google Scholar 

  122. Noguchi, T. and Nishida, R., Determination of subsurface structure of Tottori plain using microtremors and gravity anomaly, J. Natural Disaster Science, 2002, vol. 24, no. 1, pp. 1–13.

    Google Scholar 

  123. Obermann, A., Kraft, T., Larose, E., and Wiemer, S., Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland), J. Geophysical Research: Solid Earth, 2015, vol. 120, pp. 4301–4316. https://doi.org/10.1002/2014JB011817

    Article  Google Scholar 

  124. Obermann, A., Lupi, M., Mordret, A., Jakobsdóttir, S.S., and Miller, S.A., 3D-ambient noise Rayleigh wave tomography of Snæfellsjökull volcano, Iceland, J. Volcanol. Geotherm. Res., 2016, vol. 317, pp. 42–52.

    Article  Google Scholar 

  125. Obrebski, M.J., Ardhuin, F., Stutzmann, E., and Schimmel, M., How moderate sea states can generate loud seismic noise in the deep ocean, Geophys. Res. Lett., 2012, vol. 39, p. L11601. https://doi.org/10.1029/2012GL051896

    Article  Google Scholar 

  126. Ohmi, S., Hirahara, K., Wada, H., and Ito, K., Temporal variations of crustal structure in the source region of the 2007 Noto Hanto Earthquake, central Japan, with passive image interferometry, Earth Planets Space, 2008, vol. 60, pp. 1069–1074.

    Article  Google Scholar 

  127. Olivier, G., Brenguier, F., Campillo, M., Lynch, R., and Roux, P., Body-wave reconstruction from ambient seismic noise correlations in an underground mine, Geophysics, 2015a, vol. 80, no. 3, pp. KS11–KS25. https://doi.org/10.1190/GEO2014-0299.1

    Article  Google Scholar 

  128. Olivier, G., Brenguier, F., Campillo, M., Roux, P., Shapiro, N.M., and Lynch, R., Investigation of coseismic and postseismic processes using in situ measurements of seismic velocity variations in an underground mine, Geophys. Res. Lett., 2015b, vol. 42. https://doi.org/10.1002/2015GL065975

  129. Park, J., Vernon, F.L., and Lindberg, C.R., Frequency dependent polarization analysis of high-frequency seismograms, J. Geophys. Res., 1987, vol. 92(B12), pp. 12 664–12 674. https://doi.org/10.1029/JB092iB12p12664

  130. Peterson, J., GDSN Enhancement Studies Final Report, ARPA Order No. 4259, USGS Albuquerque Seismological Laboratory, Albuquerque, New Mexico, 1982.

  131. Peterson, J., Observation and modeling of seismic background noise U.S., Geol. Surv. Open-File Rept. 93–322, 1993.

  132. Podolskiy, E.A. and Walter, F., Cryoseismology, Rev. Geophys., 2016, vol. 54, pp. 708–758. https://doi.org/10.1002/2016RG000526

    Article  Google Scholar 

  133. Poupinet, G., Ellsworth, W.L., and Frechet, J., Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California, J. Geophys. Res., 1984, vol. 89, pp. 5719–5731.

    Article  Google Scholar 

  134. Richter, T., Sens-Schönfelder, C., Kind, R., and Asch, G., Comprehensive observation and modeling of earthquake and temperature related seismic velocity changes in northern Chile with passive image interferometry, J. Geophys. Res. Solid Earth, 2014, vol. 119, pp. 4747–4765. https://doi.org/10.1002/2013JB010695

    Article  Google Scholar 

  135. Rodionov, V.N. and Kondratiev, S.V., Dvizhenie mass vblizi zemnoi poverkhnosti v prilivnoi volne. Ocherk geomekhaniki (Mass Motion in a Tidal Wave near the Ground Surface. A sketch of Geomechanics), Moscow: Nauchnyi Mir, 1996.

  136. Roux, P., Sabra, K.G., Gerstoft, P., Kuperman, W.A., and Fehler, M.C., P-waves from cross-correlation of seismic noise, Geophys. Res. Lett., 2005, vol. 32, p. L19303.

    Article  Google Scholar 

  137. Rykunov, L.N., Mikroseismy. Eksperimentalnye kharakteristiki estestvennykh mikrovibratsii grunta v diapazone periodov 0.07–8 s (Microseisms. Experimental Characteristics of Natural Ground Microvibrations in the Range of Periods 0.07–8 s), Moscow: Nauka, 1967.

  138. Rykunov, L.N., Khavroshkin, O.B., and Tsyplakov, V.V., Lunar-solar periodicity in spectral lines of time-dependent variations in high frequency microseisms, Dokl. Akad. Nauk SSSR, 1980, vol. 252, no. 3, pp. 577–580.

    Google Scholar 

  139. Saltykov, V.A., A mechanism of tidal effects in seismicity based on a model of amplitude-dependent dissipation, Fiz. Mezomekh., 2014, vol. 17, no. 5, pp. 103–110.

    Google Scholar 

  140. Saltykov, V.A., Tidal Effects in High Frequency Seismic Noise Observed in a Seismic Region, Dr. Sci. (Phys.-Math.) Dissertation, Moscow, 2017.

  141. Saltykov, V.A. and Kugaenko, Yu.L., The spatial relationship between the tidal component of seismic noise and precursory areas of large earthquakes: Long-term continuous observations in Kamchatka, Fizika Zemli, 2007, no. 9, pp. 48–60.

  142. Saltykov, V.A., Kugaenko, Yu.A., Sinitsyn, V.I., and Chebrov, V.N., Precursors of large Kamchatka earthquakes based on monitoring of seismic noise, J. Volcanol. Seismol., 2008, vol. 2, no. 2, pp. 94–107.

    Article  Google Scholar 

  143. Samson, J.C., Pure states, polarized waves, and principal components in the spectra of multiple, geophysical time-series, Geophys. J. R. Astr. Soc., 1983, vol. 72, pp. 647–664.

    Article  Google Scholar 

  144. Sánchez-Pastor, P., Obermann, A., and Schimmel, M., Detecting and locating precursory signals during the 2011 El Hierro, Canary Islands, submarine eruption, Geophys. Res. Lett., 2018, vol. 45, pp. 10.288–10.297. https://doi.org/10.1029/2018GL079550

  145. Sánchez–Pastor, P., Obermann, A., Schimmel, M., Weemstra, C., Verdel, A., and Jousset, P., Short- and long-term variations in the Reykjanes geothermal reservoir from seismic noise interferometry, Geophys. Res. Lett., 2019, vol. 46, pp. 5788–5798. https://doi.org/10.1029/2019GL082352

    Article  Google Scholar 

  146. Savarensky, E.F., Seismicheskie volny (Seismic Waves), Moscow: Nedra, 1972.

  147. Savarensky, E.F. and Kirnos, D.P., Elementy seismologii i seismometrii (Principles of Seismology and Seismometry), Moscow: Gostekhteoretizdat, 1949.

  148. Seismic Ambient Noise, Nakata, N., Gualtieri, L., and Fichtner, A., Eds., Cambridge: Cambridge University Press, 2019.

  149. Sens-Schönfelder, C. and Wegler, U., Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia, Geophys. Res. Lett., 2006, vol. 33, p. L21302. https://doi.org/10.1029/2006GL027797

    Article  Google Scholar 

  150. Seroglazov, R.R., On the excitation of endogenous short-period microseisms, Dokl. Akad. Nauk Belor. SSR, 1988, vol. 32, no. 7, p. 654.

    Google Scholar 

  151. Seroglazov, R.R., The endogenous properties of short-period microseisms, Vulkanol. Seismol., 1991, no. 4, pp. 32–43.

  152. Seroglazov, R.R., Aronov, A.G., Kolkovsky, V.M., and Aronova, T.I., The structure, space-time and frequency characteristics of seismic noise in the territory of Belarus, Litasfera, 2009, vol. 2, no. 19, pp. 85–94.

    Google Scholar 

  153. Shapiro, N.M., Campillo, M., Stehly, L., and Ritzwoller, M.H., High resolution surface wave tomography from ambient seismic noise, Science, 2005, vol. 307, pp. 1615–1618.

    Article  Google Scholar 

  154. Shuleikin, V.V., Fizika morya (Sea Physics), Moscow, 1941.

    Google Scholar 

  155. Shuleikin, V.V., Ocherki po fizike morya (Sketches on Sea Physics), Moscow, 1949.

    Google Scholar 

  156. Sidorin, A.Ya., The influence of the Sun on seismicity and seismic noise, Seismicheskie Pribory, 2004, vol. 40, pp. 71–80.

    Google Scholar 

  157. Smalls, P.T., Sohn, R.A., and Collins, J.A., Lake-bottom seismograph observations of microseisms in Yellowstone Lake, Seismol. Res. Lett., 2019, vol. 90, pp. 1200‒1208. https://doi.org/10.1785/0220180242

    Article  Google Scholar 

  158. Snieder, R., Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 2004, vol. 69, p. 046610.

    Article  Google Scholar 

  159. Snieder, R., The theory of coda wave interferometry, Pure Appl. Geophys., 2006, vol. 163, nos. 2‒3, pp. 455‒473.

    Article  Google Scholar 

  160. Snieder, R., Grêt, A., Douma, H., and Scales, J., Coda wave interferometry for estimating nonlinear behavior in seismic velocity, Science, 2002, vol. 295(5563), pp. 2253–2255. https://doi.org/10.1126/science.1070015

    Article  Google Scholar 

  161. Sobolev, G.A., Variations in microseisms before large earthquakes, Fizika Zemli, 2004, no. 6, pp. 3‒13.

  162. Sobolev, G.A., Series of asymmetrical pulses in the one-minute range of microseisms as indicators of a metastable state for a seismic region, Fizika Zemli, 2008, no. 4, pp. 3‒16.

  163. Sobolev, G.A., Seismicheskii shum (Seismic Ambient Noise), Moscow: Nauka i Obrazovanie, 2014.

  164. Sobolev, G.A. and Lyubushin, A.A., Microseismic pulses as earthquake precursors, Fizika Zemli, 2006, no. 9, pp. 5–17.

  165. Sobolev, G.A. and Lyubushin, A.A., Microseismic anomalies before the December 26, 2004 Sumatra earthquake, Fizika Zemli, 2007, no. 5, pp. 3–16.

  166. Sobolev, G.A., Lyubushin, A.A., and Zakrzhevskaya, N.A., Synchronization of microseismicground motion in the one-minute range of periods, Fizika Zemli, 2005, no. 8, pp. 3–27.

  167. Sovic, I., Sariri, K., and Zivcic, M., High frequency microseismic noise as possible earthquake precursor, Research in Geophysics, 2013, vol. 3, no. 1, pp. 8‒12. https://doi.org/10.4081/rg.2013.e2

    Article  Google Scholar 

  168. Spivak, A.A., Relaxation control and diagnostics of rock massifs, Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 1994, no. 5, pp. 8–26.

  169. Spivak, A.A. and Kishkina, S.B., A study of background microseisms with a view to determining active tectonic structures and geodynamic earth characteristics, Fizika Zemli, 2004, no. 7, pp. 35–49.

  170. Stehly, L., Fry, B., Campillo, M., Shapiro, N.M., Guilbert, J., Boschi, L., and Giardini, D., Tomography of the Alpine region from observations of seismic ambient noise, Geophys. J. Int., 2009, vol. 178, pp. 338–350.

    Article  Google Scholar 

  171. Stutzmann, E., Ardhuin, F., Schimmel, M., Mangeney, A., and Patau, G., Modelling long-term seismic noise in various environments, Geophys. J. Int., 2012, vol. 191, no. 2, pp. 707–722.

    Article  Google Scholar 

  172. Tabulevich, V.N., Kompleksnye issledovaniya mikroseismicheskikh kolebanii (Multidisciplinary Studies of Microseismic Ground Motion), Novosibirsk: Nauka, 1986.

  173. Tanimoto, T., Hadziioannou, C., Igel, H., Wasserman, J., Schreiber, U., and Gebauer, A., Estimate of Rayleigh-to-Love wave ratio in the secondary microseism by collocated ring laser and seismograph, Geophys. Res. Lett., 2015, vol. 42, pp. 2650–2655. https://doi.org/10.1002/2015GL063637

    Article  Google Scholar 

  174. Tsukanov, A.A. and Gorbatikov, A.V., A study of the effects due to the contribution of body waves on results from applications of microseismic sounding method, Akust. Zhurn., 2020, vol. 66, no. 2, pp. 198–205.

    Google Scholar 

  175. Tubanov, Ts.A., Predein, P.A., Tsydypova, L.R., Sanzhieva, D.P.-D., Radziminovich, N.A., and Bazarov, A.D., The result and perspectives for seismological observations in the central part of the Baikal Rift, Ross. Seismol. Zhurn., 2021, vol. 3, no. 4, pp. 38–57.

    Article  Google Scholar 

  176. Tyupkin, Yu.S., Modulation of low magnitude seismicity by tidal strain prior to large earthquakes, Vulkanol. Seismol., 2002, no. 3, pp. 3–10.

  177. Vidale, J.E., Complex polarization analysis of particle motion, Bull. Seismol. Soc. Am., 1986, vol. 76, pp. 1393–1405.

    Google Scholar 

  178. Vidale, J.E., Agnew, D.C., Johnston, M.J.S., and Oppenheimer, H., Absence of earthquake correlation with earth tides: an indication of high preseismic fault stress rate, J. Geophys. Res., 1998, vol. 103, pp. 24 567–24 572.

  179. Vinnik, L.P., The structure of 4–6-second microseisms, Dokl. Akad. Nauk SSSR, 1965, vol. 162, no. 5, pp. 1041–1044.

    Google Scholar 

  180. Vinnik, L.P., Deniskov, A.S., and Konkov, T.D., Microseism structure at frequencies around 1 Hz. The observations, Izv. AN SSSR, Ser. Fizika Zemli, 1967, no. 8, pp. 21–28.

  181. Wang, W., Ni, S., and Wang, B., Composition of high frequency ambient noise from cross-correlation: A case study using a small aperture array, Earthq. Sci., 2010, vol. 23, pp. 433–438.

    Article  Google Scholar 

  182. Webb, S.C., Seismic noise on land and on the sea floor, in International Handbook of Earthquake and Engineering Seismology, Lee, W.H.K., Ed., Academic Press, 2002, vol. 81(A), pp. 305‒318. https://doi.org/10.1016/S0074-6142(02)80222-4

  183. Wegler, U. and Sens-Schonfelder, C., Fault zone monitoring with passive image interferometry, Geophys. J. Int., 2007, vol. 168, pp. 1029–1033.

    Article  Google Scholar 

  184. Wegler, U., Nakahara, H., Sens-Schonfelder, C., Korn, M., and Shiomi, K., Sudden drop of seismic velocity after the 2004 M w 6.6 mid-Niigata earthquake, Japan, observed with passive image interferometry, J. Geophys. Res., 2009, vol. 114, p. B06305. https://doi.org/10.1029/2008JB005869

    Article  Google Scholar 

  185. Wilson, C.D.V., The origins and nature of microseisms in the frequency range 4 to 100 c/s, Proc. Royal Society A: Mathematical, Physical and Engineering Sciences, 1953, vol. 217(1129), pp. 176–188. https://doi.org/10.1098/rspa.1953.0055

    Article  Google Scholar 

  186. Withers, M.M., Aster, R.C., Young, C.J., and Chael, E.P., High-frequency analysis of seismic background noise as a function of wind speed and shallow depth, Bull. Seism. Soc. Am., 1996, vol. 86, p. 1507.

    Article  Google Scholar 

  187. Xu, Y., Koper, K.D., and Burlacu, R., Lakes as a source of short-period (0.5–2 s) microseisms, J. Geophys. Res.: Solid Earth, 2017, vol. 122, pp. 8241–8256. https://doi.org/10.1002/2017JB014808

    Article  Google Scholar 

  188. Yakovlev, A.P. and Aleshin, V.A., A study of monochromatic components in high frequency seismic noise, Fizika Zemli, 1994, no. 3, pp. 3–19.

  189. Yang, Y., Ritzwoller, M.H., Lin, F.-C., Moschetti, M.P., and Shapiro, N.M., The structure of the crust and uppermost mantle beneath the western US revealed by ambient noise and earthquake tomography, J. Geophys. Res., 2008, vol. 113, p. B12310. https://doi.org/10.1029/2008JB005833

    Article  Google Scholar 

  190. Yanovskaya, T.B., On the theory of microseismic sounding, Fizika Zemli, 2017, no. 6, pp. 18–23.

  191. Yanovskaya, T.B. and Koroleva, T.Yu., On the influence of earthquakes on the cross-correlation function of seismic noise, Fizika Zemli, 2011, no. 9, pp. 3–12.

  192. Young, C.J., Chael, E.P., Withers, M.M., and Aster, R.C., A comparison of the high-frequency (>1 Hz) surface and subsurface noise environment at three sites in the United States, Bull. Seismol. Soc. Am., 1996, vol. 86, no. 5, pp. 1516‒1528.

    Article  Google Scholar 

  193. Zaitsev, V.Yu., Saltykov, V.L., and Matveev, L.A., Modulation of high frequency seismic noise with tidal strain: The effect before large earthquakes and a hypothetical physical mechanism, Fizika Zemli, 2011, no. 11, pp. 3–17.

  194. Zakharov, V.E., The stability of periodic waves of finite amplitude at the surface of a deep liquid, Prikl. Mekh. Tekh. Fiz., 1968, no. 2, p. 86.

  195. Zapolsky, K.K., Measurements of level and spectral content: Short period microseisms, Vopr. Inzh. Seismol., 1960, no. 3, pp. 153–164.

Download references

ACKNOWLEDGMENTS

We wish to thank Cand. Sci. (Phys.–Math.) S.B. Kishkina and D-r Sci. (Phys.–Math.) professor G.G. Kocharyan for valuable advice and remarks during the preparation of the manuscript. We are also deeply grateful to the reviewers whose remarks have considerably improved the presentation of the material.

Funding

This work was supported by the Russian Science Foundation, project no. 22-27-20066, https://rscf.ru/project/22-27-20066) using data acquired by the Seismic Infrared Complex for Monitoring the Arctic Cryolithic Zone and a Complex for Continuous Seismic Monitoring of the Russian Federation, Adjacent Areas, and Worldwide installation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Besedina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Petrosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besedina, A.N., Tubanov, T.A. Microseisms as a Tool for Geophysical Research. A Review. J. Volcanolog. Seismol. 17, 83–101 (2023). https://doi.org/10.1134/S0742046323700112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046323700112

Keywords:

Navigation