Skip to main content
Log in

Gas Emission on Ebeko Volcano, Kuril Islands in 2003–2021: Geochemistry, Flows, and Indicators of Activity

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

This paper reports on new data concerning the chemical and isotopic composition of volcanic gases, the emission of volcanic SO2 and of soil CO2 at the active Ebeko Volcano. The volcano erupted in 2009, 2010, 2011, from October 2016 to November 2021. The composition of volcanic gases for 2003–2016, 2021 was obtained by straightforward sampling of the fumaroles. The high-temperature gas (420–529°С) has a composition that is typical of Kuril magmatic gases with an atomic ratio C/S <1 and the concentration of HCl 5–7 mmol/mol; the isotopic composition of the condensates: δD ~ –24, δ18O = 2.6–4.9. We have identified geochemical precursors of the eruption: increasing concentrations of CO2, Н2, SO2, H2S, and HCl; decreasing C/S ratio down to values below 1, which is characteristic for magmatic gases at the Kurils; increasing temperature; heavier isotopes of δD and δ18O in condensates of volcanic vapor; increasing gas flux. The accumulation chamber technique was used to measure a high soil flux of CO2 in two thermal fields (reaching 10 442 g/m2/day), which exceeds the visible fumarolic output (~50 t/day as against ~40 t/day). The flux of SO2 from the active crater was measured using a DOAS scanning HC spectrometer in 2020 and in 2021, and was 99 ± 28 and 9 ± 2.7 t/day in gas plumes, and 747 ± 220 and 450 ± 130 t/day in ash plumes, respectively. The decreasing emission of SO2 in August 2021 is here related to degassing of the magma before the termination of the eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Belousov, A., Belousova, M., Auer, A., et al., Mechanism of the historical and the ongoing Vulcanian eruptions of Ebeko volcano, Northern Kuriles, Bull. Volcanol., 2021, vol. 83(4). https://doi.org/10.1007/s00445-020-01426-z

  2. Bloomberg, S., Werner, C., Rissmann, C., et al., Soil CO 2 emissions as a proxy for heat and mass flow assessment, Taupo Volcanic Zone, New Zealand, Geochemistry. Geophys. Geosystems, 2014, vol. 15, pp. 4885–4904. https://doi.org/10.1002/2014GC005327

    Book  Google Scholar 

  3. Chiodini, G., Cioni, R., Guidi, M., et al., Soil CO2 flux measurements in volcanic and geothermal areas, Appl. Geochem., 1998, vol. 13, pp. 543–552. https://doi.org/10.1016/S0883-2927(97)00076-0

    Article  Google Scholar 

  4. Chiodini, G., Frondini, F., and Raco, B., Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy), Bull. Volcanol., 1996, vol. 58, pp. 41–50.

    Article  Google Scholar 

  5. Craig, H., Isotopic variations in meteoric waters, Science, 1961, no. 133, pp. 1702–1703.

  6. Fedotov, S.A., Estimates of heat and pyroclastics transport by volcanic eruptions and fumaroles based on the height of their jets and clouds, Vulkanol. Seismol., 1982, no. 4, pp. 3–28.

  7. Galle, B., Johansson, M., Rivera, C., et al., Network for observation of volcanic and atmospheric change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description, J. Geophys. Res., 2010, vol. 115, D05304. https://doi.org/10.1029/2009JD011823

    Article  Google Scholar 

  8. Gerlach, T.M., Doukas, M.P., McGee, K.A., et al., Three year decline of magmatic CO2 emissions from soils of a Mammoth Mountain tree kill: Horseshoe Lake, CA, 1995–1997, Geophys. Res. Lett., 1998, vol. 25, pp. 1947–1950.

    Article  Google Scholar 

  9. Giggenbach, W.F., Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand, Appl. Geochem., 1987, vol. 2, pp. 143–161.

    Article  Google Scholar 

  10. Giggenbach, W.F. and Goguel, R.L., Collection and Analysis of Geothermal and Volcanic Water and Gas Discharges, New Zealand DSIR Chem. Division Report 2407, Christchurch, New Zealand, 1989.

  11. Hochstein, M.P. and Bromley, C.J., Steam cloud characteristics and heat output of fumaroles, Geothermics, 2001, vol. 30, pp. 547–559.

    Article  Google Scholar 

  12. Hsin-Yi, Wen, Tsanyao, F. Yang, Tefang, F. Lan, et al., Soil CO2 flux in hydrothermal areas of the Tatun Volcano Group, Northern Taiwan, J. Volcanol. Geotherm. Res., 2016, vol. 321, pp. 114–124. https://doi.org/10.1016/j.jvolgeores.2016.04.021

    Article  Google Scholar 

  13. Kalacheva, E., Taran, Y., Kotenko, T., et al., Volcano-hydrothermal system of Ebeko volcano, Paramushir, Kuril Islands: geochemistry and solute fluxes of magmatic chlorine and sulfur, J. Volcanol. Geotherm. Res., 2016, vol. 310, pp. 118–131. https://doi.org/10.1016/j.volgeores.2015.11.006

    Article  Google Scholar 

  14. Kirsanov, I.T., Serafimova, E.K., Sidorov, S.S., et al., The eruption of Ebeko Volcano in March–April 1963, Byull. Vulkanol. St., 1964, no. 36, pp. 66–72.

  15. Kotenko, T.A. and Kotenko, L.V., Hydrothermal occurrences and heat flow of Ebeko and Krasheninnikov volcanoes, Paramushir, Kuril Islands, Vestnik KRAUNTs, Nauki o Zemle, 2006, no. 1, iss. 7, pp. 129–137.

  16. Kotenko, T.A. and Kotenko, L.V., The state of Ebeko Volcano, Paramushir Islands and the influence of its activity on the ecological situation, Vestnik DVO RAN, 2010, no. 3, pp. 51–58.

  17. Kotenko, T.A., Kotenko, L.V., and Shapar, V.N., Increased activity on Ebeko Volcano, Paramushir I., North Kurils in 2005–2006, J. Volcanol. Seismol., 2007, vol. 1, no. 5, pp. 285—295.

    Article  Google Scholar 

  18. Kotenko, T.A., Kotenko, L.V., Sandimirova, E.I., et al., The eruption of Ebeko Volcano in January–June 2009 (Paramushir Island, Kuril Islands), Vestnik KRAUNTs, Nauki o Zemle, 2010, issue 15, no. 1, pp. 56‒68.

  19. Kotenko, T.A., Kotenko, L.V., Sandimirova, E.I., et al., The 2010—2011 eruptive activity of Ebeko Volcano, Paramushir Island, Vestnik KRAUNTs, Nauki o Zemle, 2012, no. 1, iss. 19, pp. 160–167.

  20. Kotenko, T.A., Sandimirova, E.I., and Kotenkom L.V., The 2016—2017 eruption of Ebeko Vocano, Kuril Islands, Vestnik KRAUNTs, Nauki o Zemle, 2018, no. 1, iss. 37, pp. 32–42.

  21. Kotenko, T.A., Smirnov, S.Z., and Sandimirova, E.I., Ebeko Volcano in 2019: The dynamics of eruption based on surface data, in Materialy XXIII regionalnoi nauchnoi konferentsii “Vulkanizm i svyazannye s nim protsessy”, posvyashchennoi Dnyu vulkanologa (Proc. XXIII Regional Conference “Volcanism and Related Processes” Devoted to Volcanologist’s Day), 2020, Petropavlovsk-Kamchatsky: IViS DVO RAN, 2020, pp. 38−41.

  22. Lewicki, J.L., Hilley, G.E., Tosha, T., et al., Dynamic coupling of volcanic CO2 flow and wind at the Horseshoe Lake tree kill, Mammoth Mountain, California, Geophys. Res. Lett., 2007, vol. 34, L03401. https://doi.org/10.1029/2006GL028848

    Article  Google Scholar 

  23. Mazot, A., Rouwet, D., Taran, Y., et al., CO2 and He degassing at El Chichón volcano, Chiapas, Mexico: gas flux, origin and relationship with local and regional tectonics, Bull. Volcanol., 2011, vol. 73, pp. 423–441. https://doi.org/10.1007/s00445-010-0443-y

    Article  Google Scholar 

  24. McGimsey, R.G., Neal, C.A., Girina, O.A., et al., The 2009 volcanic activity in Alaska, Kamchatka, and the Kurile Islands – Summary of events and response of the Alaska Volcano Observatory, U.S. Geological Survey Scientific Investigations Report 2013–5213, 2014. https://doi.org/10.3133/sir20135213

  25. Melekestsev, I.V., Dvigalo, V.N., Kiryanov, V.Yu., et al., Ebeko Volcano, Kuril Islands: A history of eruption activity and the future volcanic hazard, Part I, Vulkanol. Seismol., 1993a, no. 3, pp. 69–81.

  26. Melekestsev, I.V., Dvigalo, V.N., Kiryanov, V.Yu., et al., Ebeko Volcano, Kuril Islands: A history of eruption activity and the future volcanic hazard, Part II, Vulkanol. Seismol., 1993b, no. 4, pp. 24–42.

  27. Melnikov, D., Malik, N., Kotenko, T., et al., A new estimate of gas emissions from Ebeko volcano, Kurile Islands, Goldschmidt Conference, 26 June–1 July, 2016, Yokohama, Yapan, p. 2047.

  28. Menyailov, I.A., Nikitina, L.P., and Shapar, V.N., Results of geochemical monitoring of the activity of Ebeko volcano (Kurile Islands) used for eruption prediction, J. Geodynamics, 1985, vol. 3/4, pp. 259–274. https://doi.org/10.1016/0264-3707(85)90038-9

    Article  Google Scholar 

  29. Menyailov, I.A., Nikitina, L.P., and Shapar, V.N., The chemical and isotopic composition of fumarolic gases during the inter-eruptive period in the activity of Ebeko Volcano, Vulkanol. Seismol., 1988a, no. 4, pp. 21–36.

  30. Menyailov, I.A., Ovsyannikov, A.A., and Shirokov, V.A., The eruption of Ebeko Volcano in October–December 1987, Vulkanol. Seismol., 1988b, no. 3, pp. 105–108.

  31. Nekhoroshev, A.S., The geothermal conditions and heat flow from Ebeko Volcano, Paramushir Island, Byull. Vulkanol. St., 1960, no. 29, pp. 38–46.

  32. Shimoike, Y., Kazahaya, K., and Shinohara, H., Soil gas emission of volcanic CO2 at Satsuma-Iwojima volcano, Japan, Earth Planets Space, 2002, vol. 54, pp. 239–247.

    Article  Google Scholar 

  33. Shinohara, H., A new technique to estimate volcanic gas composition: Plume measurements with a portable multi-sensor system, J. Volcanol. Geotherm. Res., 2005, vol. 143(4), pp. 319–333.

    Article  Google Scholar 

  34. Shinohara, H., Yokoo, A., and Kazahaya, R., Variation of volcanic gas composition during the eruptive period in 2014–2015 at Nakadake crater, Aso volcano, Japan, Earth Planets Space, 2018, vol. 70, pp. 151. https://doi.org/10.1186/s40623-018-0919-0

    Article  Google Scholar 

  35. Stix, J. and de Moor, J.M., Understanding and forecasting phreatic eruptions driven by magmatic degassing, Earth Planets Space, 2018, vol. 70(83). doi.org/https://doi.org/10.1186/s40623-018-0855-z

  36. Surnina, L.V., The chemical composition of gases at Ebeko Volcano, Geokhimiya, 1959, no. 5, pp. 468–473.

  37. Tanakadate, H., Volcanic activity in Japan during the period between July 1934 and October 1935, Japanese J. Astron. Geophys., 1936, vol. 13, pp. 121–139.

    Google Scholar 

  38. Taran, Y. and Zelenski, M., Systematics of water isotopic composition and chlorine content in arc-volcanic gases, in The Role of Volatiles in the Genesis, Evolution and Eruption of Arc Magmas, Special Publications, Geological Society, London, 2014, pp. 410–432.

    Google Scholar 

  39. Taran, Yu.A., Pokrovsky, B.G., and Dubik, Yu.M., The isotopic composition and origin of water in andesitic magmas, Dokl. AN SSSR, 1989, vol. 304, no. 2, pp. 440–443.

    Google Scholar 

  40. Taran, Y., Zelenski, M., Chaplygin, I., et al., Gas emissions from volcanoes of the Kuril Island arc (NW Pacific): geochemistry and fluxes, Geochemistry, Geophysics, Geosystems, 2018, vol. 19(6), pp. 1859–1880. https://doi.org/10.1029/2018GC007477

    Article  Google Scholar 

  41. Tarasov, K.V., Results from a survey of soil CO2 flux in the caldera of Golovin Volcano, Kunashir Island, in Materialy XXIV regionalnoi nauchnoi konferentsii “Vulkanizm i svyazannye s nim protsessy”, posvyashchennoi Dnyu vulkanologa (Proc. XXIV Regional Conference “Volcanism and Related Processes” Devoted to Volcanologist’s Day), 2021, Petropavlovsk-Kamchatsky: IViS DVO RAN, 2021, pp. 152−155.

  42. Voronova, L.G., Sidorov, S.S., and Surnina, L.V., The evolution of the Ebeko hydrothermal system between 1951 and 1963, in Opyt kompleksnogo issledovaniya raiona sovremennogo i noveishego vulkanizma (na primere khr. Vernadskogo, o. Paramushir) (An Experience in the Study of an Area of Present-Day and Neotectonic Volcanism: Vernadsky Mountain Range, Paramushir Island), Yuzhno-Sakhalinsk, 1966, pp. 162–168.

  43. Walter, T.R., Belousov, A., Belousova, M., et al., The 2019 eruption dynamics and morphology at Ebeko Volcano monitored by unoccupied aircraft systems (UAS) and field stations, Remote Sens., 2020, vol. 12, p. 1961. https://doi.org/10.3390/rs12121961

    Article  Google Scholar 

  44. Werner, C., Hurwitz, S., Evans, W.C., et al., Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA, J. Volcanol. Geotherm. Res., 2008, vol. 178, pp. 751–762. https://doi.org/10.1016/j.jvolgeores.2008.09.016

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank S.N. Rychagov for continual aid, E.G. Kalacheva for joint work, L.V. Kotenko for constant participation in field surveys and the acquisition of a large amount of gas samples, and D.Yu. Kuzmin for his participation in gas sampling in 2003 and 2011, and for measurements of soil СО2 in 2017.

We thank our reviewers for constructive criticism and valuable remarks which went far toward improving the manuscript.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-05-00517/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kotenko.

Additional information

Translated by A. Petrosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotenko, T.A., Melnikov, D.V. & Tarasov, K.V. Gas Emission on Ebeko Volcano, Kuril Islands in 2003–2021: Geochemistry, Flows, and Indicators of Activity. J. Volcanolog. Seismol. 16, 264–279 (2022). https://doi.org/10.1134/S0742046322040054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046322040054

Keywords:

Navigation