Skip to main content
Log in

Heat Flow Asymmetry in Mantle Plumes

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

All known mantle plumes are characterized by a divergence between the location of the extreme heat flow and the recent volcanism center. To explain this phenomenon, it is proposed to consider the Coriolis effect influence, which deflects the magma flow within a mantle plume from the trajectory that is orthogonal to the planet surface. A formula was used that relates the deviation, the latitude of heat flow anomaly and the depth to the source of magmatism. The evolution of tectonomagmatic activity manifested itself differently in individual plumes. The evolution of the Hawaiian and Mascarene plumes can be explained by the prolonged magmatic material advection from the mantle transition layer, whose source is near the Lehmann boundary in the mantle (400–450 km), and the discrepancy between the center of volcanism position and the heat flow anomaly is explained by the influence of the Coriolis force. In the case of the Iceland and Yellowstone plumes, their evolution is associated not only with the heat and mass transfer of material from the transition mantle layer, but also with the influence of magmatism from the depleted mantle, characteristic of divergent zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Anderson, D., The thermal state of the upper mantle: no role for mantle plumes, Geophys. Res. Lett., 2000, vol. 27, pp. 3623–3626.

    Article  Google Scholar 

  2. Aplonov, S.V., Geodinamika (Geodynamics), St. Petersburg University Press, 2001.

    Google Scholar 

  3. Blackwell, D.D., Regional implications of heat flow of the Snake River Plain, northwestern United States, Tectonophysics, 1989, vol. 164, pp. 323–343.

    Article  Google Scholar 

  4. Blackwell, D.D., Negraru, P.T., and Richards, M.C., Assessment of the enhanced geothermal system resource base of the United States, Nat. Resources Results, 2006, vol. 15(4), pp. 283–308.

    Article  Google Scholar 

  5. Christiansen, R., Foulger, G., and Evans, J., Upper-mantle origin of the Yellowstone hotspot, Geol. Soc. Am. Bull., 2002, vol. 114, pp. 1245–1256.

    Article  Google Scholar 

  6. Forsyth, D.A., Morel-l`Huissier, P., Asudsen, I., et al., Alpha Ridge and Iceland: Product of the same plume? J. Geodynamics, 1986, vol. 6, pp. 197–214.

    Article  Google Scholar 

  7. Foulger, G.R., Plumes, or plate tectonic processes? Astron. Geophys., 2002, vol. 43, pp. 619–623.

    Article  Google Scholar 

  8. Gushchenko, I.I., Izverzheniya vulkanov Mira. Katalog (Eruptions of World Volcanoes: A Catalog), Moscow: Nauka, 1979.

  9. Hamilton, W., The closed upper-mantle circulation of plate tectonics, in Plate Boundary Zones, Stein, S. and Freymueller, J., Eds., Washington DC: AGU, 2002. P. 359–410.

    Google Scholar 

  10. Hasterok, D. and Jennings, S., Global database: http://heatflow.org, 2016.

  11. Humphreys, E.D., Dueker, K.G., Schutt, D.L., et al., Beneath Yellowstone: Evaluating plume and nonplume models using teleseismic images of the upper mantle, GSA Today, 2000, vol. 10, no. 12, pp. 1–7.

    Google Scholar 

  12. Husen, S., Smith, R.B., and Waite, G.P., Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging, J. Volcanol. Geotherm. Res., 2004, vol. 131, pp. 397–410.

    Article  Google Scholar 

  13. Ito, G. and van Keken, P.E., Hotspots and melting anomalies, in Mantle Dynamics, Treatise on Geophysics, vol. 7, Bercovici, D., Ed., Amsterdam, The Netherlands: Elsevier Press, 1997, pp. 512–526.

    Google Scholar 

  14. Jaupart, C., Labrosse, S., and Mareschal, J.C., Temperatures, heat and energy in the mantle of the Earth, in Treatise on Geophysics, Gerald, S., Editor-in-Chief, Amsterdam: Elsevier, 2007, pp. 253–303.

    Google Scholar 

  15. Jordan, M., Smith, R.B., Puskas, C., Farrell, J., and Waite, G., The Yellowstone hotspot and related plume: volcano-tectonics, tomography, kinematics and mantle flow, EOS Trans. AGU, 2005, vol. 86(52), pp. 1380–1388.

    Article  Google Scholar 

  16. Khutorskoi, M.D. and Teveleva, E.A., The asymmetric distribution of heat flow at the mid-ocean ridges, Dokl. Akad. Nauk, 2019a, vol. 489, no. 2, pp. 71–77.

    Google Scholar 

  17. Khutorskoi, M.D. and Teveleva, E.A., On the asymmetry of heat flow at mantle plumes, Monitoring. Nauka i Tekhnologii, 2019b, no. 4(42), pp. 72–77.

  18. Kulikov, K.A., Vrashchenie Zemli (The Rotation of the Earth), Moscow: Nedra, 1985.

  19. Lawver, L.A. and Müller, R.D., Iceland hotspot track, Geology, 1994, vol. 22, pp. 311–314.

    Article  Google Scholar 

  20. Morgan, W.J., Convection plumes in the lower mantle, Nature, 1971, vol. 230, pp. 42–43.

    Article  Google Scholar 

  21. Norton, I., The 43Ma nonevent, Tectonics, 1995, vol. 14, pp. 1080–1094.

    Article  Google Scholar 

  22. Podgornykh, L.V. and Khutorskoi, M.D., The geothermal asymmetry of mid-ocean ridges, Geotektonika, 1999, no. 3, pp. 21–42.

  23. Shen, Y., Solomon, S.C., Bjarnason, I.Th., and Wolfe, C.J., Seismic evidence for a lower mantle origin of the Iceland plume, Nature, 1998, vol. 395, pp. 62–65.

    Article  Google Scholar 

  24. Smith, R.B., Jordan, M., Steinberger, B., et al., Geodynamics of the Yellowstone hotspot and mantle plume: seismic and GPS imaging, kinematics, and mantle flow, Journal of Volcanology and Geothermal Research, 2009, vol. 188, pp. 26–56.

    Article  Google Scholar 

  25. Smith, R.B. and Siegel, L., Windows into the Earth’s Interior; The Geologic Story of Yellowstone and Grand Teton National Parks, Oxford University Press, 2000.

    Google Scholar 

  26. Sorokhtin, O.G., Chilingar, Dzh.V., and Sorokhtin, N.O., Teoriya razvitiya Zemli: proiskhozhdenie, evolyutsiya i tragicheskoe budushchee (A Theory of the Earth’s Evolution: Origin, Evolution, and the Tragic Future), Moscow–Izhevsk: Institut Kompyuternykh issledovanii RAN, RAEN, 2010.

  27. Stein, C.A. and Stein, S., A model for the global variation in oceanic depth and heat flow with lithospheric age, Nature, 1992, vol. 359, pp. 123–129.

    Article  Google Scholar 

  28. Steinberger, B. and O’Connell, R.J., Effects of mantle flow on hotspot motion, Geophys. Mono., 2000, vol. 121, pp. 377–398.

    Google Scholar 

  29. Tarduno, J. and Cottrell, R., Paleomagnetic evidence for motion of the Hawaiian Hotspot during formation of the Emperor Seamounts, Earth Planet. Sci. Lett., 1997, vol. 153(3–4), pp. 171–180.

    Article  Google Scholar 

  30. Tolstikhin, I.N. and Kramers, J., The Evolution of Matter from the Big Bang to the Present Day, Cambridge University Press, 2008.

    Google Scholar 

  31. Torsvik, T.H., Amundsen, H.E.F., Tronnes, R.G., et al., Continental crust beneath southeast Iceland, Proceed. of National Acad. Sci. of USA(PNAS), 2015, no. 3, pp. 1818–1827.

  32. Waite, G.P., Schutt, D.L., and Smith, R.B. Models of lithosphere and asthenosphere anisotropic structure of the Yellowstone hot spot from shear wave splitting, J. Geophys. Res., 2005, vol. 110. B1.1304.

  33. White, R.S. and McKenzie, D.P., Mantle plumes and flood basalts, J. Geophys. Res., 1995, vol. 100, pp. 17 543–17 585.

  34. Wilson, J.T., A possible origin of the Hawaiian Islands, Can. J. Phys., 1963, vol. 41, pp. 863–870.

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 19-05-00014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Khutorskoi.

Additional information

Translated by A. Petrosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutorskoi, M.D. Heat Flow Asymmetry in Mantle Plumes. J. Volcanolog. Seismol. 14, 318–326 (2020). https://doi.org/10.1134/S0742046320050036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046320050036

Keywords:

Navigation