Skip to main content
Log in

Seismic Tomography Model for the Crust of Southern Crimea and Adjacent Northern Black Sea

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

This new seismic tomography study for the crust of southern Crimea and the northeastern Black Sea based on low-magnitude (M ≤ 3) earthquakes indicates significant heterogeneity of the crust at depths of 15–35 km. In the present paper we discuss the velocity distribution for P- and S-waves and give geological and tectonic interpretations in the context of collisional interaction between the Black Sea microplate and the Scythian plate. The joint use of data on both types of waves (P- and S-waves) increases the reliability of the interpretation and allows us to estimate the crustal composition of Mountainous Crimea (MC) and subcrustal mantle of the northeastern Black Sea. We have detected high velocity regions in the MC crust (Vp = 6.5‒6.8 km/s, Vs = 3.7‒3.9 km/s, Vp/Vs = 1.75‒1.9), which have complex configurations and can be deep sources of mid-Mesozoic intrusions known in the MC (Ayu-Dag and Castel). The high-velocity area is separated from eastern Crimea by a linear nearly north–south low-velocity zone located between the cities of Sudak and Feodosiya. The latter is interpreted as a weakened crustal zone associated with the Korsak–Feodosiya fault. The high-velocity region beneath the Black Sea (south of Kerch Peninsula) at depths of 25–40 km most likely belongs to the subcrustal mantle (Vp/Vs = 1.80–1.85) that underlies a thin suboceanic crust of the East Black Basin. The resulting crustal model for southern Crimea and adjacent part of the Black Sea is consistent with the parameters of other geophysical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Brocher, T.M., Empirical relations between elastic wave-speeds and density in the Earth’s crust, Bull. Seismol. Soc. Am., 2005, vol. 95, pp. 2081–2092. https://doi.org/10.1785/0120050077

  2. Brown, D., Carbonell, R., and Kukkonen, I., Composition of the Uralide crust from seismic velocity (Vp, Vs), heat flow, gravity, and magnetic data, Earth Planet. Sci. Lett., 2003, vol. 210, pp. 333–349.

    Article  Google Scholar 

  3. Christensen, N.I., The abundance of serpentinites in oceanic crust, J. Geology, 1972, vol. 80, pp. 709–719.

    Article  Google Scholar 

  4. Christensen, N.I., Poisson’s ratio and crustal seismology, J. Geophysical Research, 1996, vol. 101, pp. 3139–3156.

    Article  Google Scholar 

  5. Entin, V.A., Gintov, O.B., and Guskov, S.I., Once again about the nature of the Crimean gravity anomaly, Geofiz.Zhurn., 2010, vol. 32, no. 6, pp. 119–134.

    Google Scholar 

  6. Fernández-Viejo, G.R.M., Clowes, R.M., and Welford, J.K., Constraints on the composition of the crust and uppermost mantle in northwestern Canada: Vp/Vs variations along Lithoprobe’s SNorCLE Transect, Canadian J. Earth Sciences, 2005, vol. 42, pp. 1205–1222.

    Article  Google Scholar 

  7. Fountain, D.M. and Christensen, N.I., Composition of the continental crust and upper mantle; A review, Mem. Geol. Soc. Am., 1989, vol. 172, pp. 711–742.

    Google Scholar 

  8. Gobarenko, V.S. and Yanovskaya, T.B., A study of lateral heterogeneities in the structure of the upper mantle in the Sayan–Altai zone, Izv. AS SSSR,Fizika Zemli, 1983, no. 4, pp. 21–35.

  9. Gobarenko, V.S. and Yanovskaya, T.B., Velocity structure of the uppermost mantle in the Black Sea basin, Geofiz.Zhurn., 2011, vol. 33, no. 3, pp. 62–74.

    Google Scholar 

  10. Gobarenko, V.S. and Yegorova, T.P., Three-dimensional P-velocity model of the Black Sea lithosphere according to local seismic tomography, Geofiz.Zhurn., 2008, vol. 30, no. 5, pp. 161–177.

    Google Scholar 

  11. Gobarenko, V.S., Nikolova, S.B., and Yanovskaya, T.B., The upper mantle structure in southeastern Europe, Asia Minor, and the Eastern Mediterranean based on P-wave travel time residuals, Izv. AS SSSR,Fizika Zemli, 1986, no. 8, pp. 15–23.

  12. Gobarenko, V.S., Murovskaya, A.V., Yegorova, T.P., Sheremet, E.E., Collision processes at the northern margin of the Black Sea, Geotektonika, 2016, no. 4, pp. 68–87. https://doi.org/10.1134/S0016852116040026

  13. Gobarenko, V., Yegorova, T., and Stephenson, R., Local tomography model of the northeast Black Sea: intraplate crustal underthrusting, in Tectonic Evolution of the Eastern Black Sea and Caucasus, Sosson, M., Stephenson, R.A., and Adamia, S.A., Eds., Geol. Soc. London Spec. Publ. Geol. Soc., London, 2017, vol. 428, pp. 221–239. https://doi.org/10.1144/SP428.2

  14. Holbrook, W.S., Mooney, W.D., and Christensen, N.I., The seismic velocity of the deep continental crust, in Continental Lower Crust, Fountain, D.M., Arculus, R., and Kay, R.W., Eds., NY: Elsevier, 1992, pp. 1–34.

    Google Scholar 

  15. Hyndman, R.D. and Peacock, S.M., Serpentinization of the forearc mantle, Earth Planet. Sci. Lett., 2003, vol. 212, pp. 417–432. https://doi.org/10.1016/S0012-821X(03)00263-2

  16. Kamiya, S. and Kobayashi, Y., Seismological evidence for the existence of serpentinized wedge mantle, Geophysical Research Letters, 2000, vol. 27, pp. 819–822.

    Article  Google Scholar 

  17. Kern, H., Gao, S., Jin, Z., et al., Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt, Central China: implications for the composition and delamination of the lower crust, Tectonophysics, 1999, vol. 301, pp. 191–215.

    Article  Google Scholar 

  18. Kulakov, I.Yu., Upper mantle structure beneath southern Siberia and Mongolia according to from regional seismic tomography, Russian Geology and Geophysics, 2008, vol. 49, no. 3, pp. 248–261.

    Article  Google Scholar 

  19. Kulchitsky, V.E. and Pustovitenko, B.G., 80 years of instrumental seismic observations in the Crimea: History, results, and prospects, Geofiz.Zhurn., 2008, vol. 30, no. 5, pp. 9–49.

    Google Scholar 

  20. Kuusisto, M., Kukkonen, I.T., Heikkinen, P., et al., Lithological interpretation of crustal composition in the Fennoscandian Shield with seismic velocity data, Tectonophysics, 2006, vol. 420, pp. 283–299.

    Article  Google Scholar 

  21. Lebedinsky, V.I. and Soloviev, I.V., Bajocian volcanic structures of the Crimean Mountains, Geol. Zhurn., 1988, no. 4, pp. 85–93.

  22. Li, L., Clift, P.D., Stephenson, R., and Nguyen, H.T., Non-uniform hyper-extension in advance of seafloor spreading on the Vietnam continental margin and the SW South China Sea, Basin Research, 2014, vol. 26, pp. 106–134. https://doi.org/10.1111/bre.12045

    Article  Google Scholar 

  23. Lundin, E.R. and Doré, A.G., Hyperextension, serpentinization, and weakening: a new paradigm for rifted margin compressional deformation, Geology, 2011, vol. 39, pp. 347–350. https://doi.org/10.1130/G31499.1

    Article  Google Scholar 

  24. MacKenzie, L., Abers, G.A., Fischer, K.M., et al., Crustal structure along the southern Central American volcanic front, Geochemistry Geophysics Geosystems, 2008, vol. 9(8). Q08S09. https://doi.org/10.1029/2008GC001991

    Article  Google Scholar 

  25. Meijers, M.J.M., Vrouwe, B., van Hinsbergen, D.J.J., et al., Jurassic arc volcanism on Crimea (Ukraine): implications for the paleosubduction zone configuration of the Black Sea region, Lithos, 2010, vol. 119, pp. 412–426. https://doi.org/10.1016/j.lithos.2010.07.017

    Article  Google Scholar 

  26. Mjelde, R., Aurvwag, R., Kodaira, S., et al., Vp/Vs-ratios from the central Kolbeinsey ridge to the Jan Mayen basin, north Atlantic; implications for lithology, porosity and present-day stress field, Marine Geophysical Researches, 2002, vol. 23, pp. 125–145.

    Google Scholar 

  27. Musacchio, G., Mooney, W.D., Luetgert, J.H., et al., Composition of the crust in the Grenville and Appalachian Provinces of North America inferred from Vp/Vs, J. Geophys. Res., 1997, vol. 102, pp. 15 225–15 241.

  28. Musacchio, G., White, D. J., Asudah, I., et al., Lithospheric structure and composition of the Archean west Superior provinces from seismic refraction/wide-angle reflection and gravity modeling, J. Geophys. Res., 2004, vol. 109. B03304.

    Article  Google Scholar 

  29. Pease, V., Drachev, S., Stephenson, R., and Zhang, X., Arctic lithosphere—a review, Tectonophysics, 2014, vol. 628, pp. 1–25.

    Article  Google Scholar 

  30. Popov, D., Brovchenko, V., Nekrylov, N., et al., Removing a mask of alteration: Geochemistry and age of the Karadag volcanic sequence in SE Crimea, Lithos, 2019, vol. 324‒325, pp. 371‒384.

    Article  Google Scholar 

  31. Rudnick, R.L. and Fountain, D.M., Nature and composition of the continental crust: A lower crustal perspective, Reviews in Geophysics, 1995, vol. 33, pp. 267–309.

    Article  Google Scholar 

  32. Seismologicheskii byulleten Zapadnoi territorialnoi zony ESSN (Krym–Karpaty) za 1970–1990 gg. (Seismological Bulletin of the Western Territorial Zone of the ESSN (Crimea–Carpathians) for 1970–1990, Kiev: Naukova Dumka, 1980–1994.

  33. Seismologicheskii byulleten Ukrainy za 1991–2013 gg. (Seismological Bulletin of the Ukraine for 1991–2013), Sevastopol: NPTs EKOSI-Gidrofizika, 1995–2014.

  34. Shnyukova, E.E., Small intrusions in the Mountainous Crimea, in Paleoostrovnaya duga severa Chernogo morya (The older Island Arc of the northern Black Sea), Shnyukov, E.F., Shcherbakov, I.B., and E.E. Shnyukova, E.E., Eds., Kiev: NANU, 1997, pp. 129–186.

  35. Sollogub, V.B. and Sollogub, N.V., The crustal structure of the Crimean peninsula, Sov. Geol., 1977, no. 3, pp. 85–93.

  36. Spakman, W. and Bijwaard, H., Optimization of cell-parametrization for tomographic inverse problems, Pure Appl. Geophys., 2001, vol. 158, pp. 1401–1423.

    Article  Google Scholar 

  37. Spiridonov, E.M., Fedorov, T.O., and Ryakhovsky, V.M., Magmatic formations of the mountainous Crimea, Article 1, Byull. MOIP,Otd. Geol., 1990a, vol. 65, no. 4, pp. 119–133.

    Google Scholar 

  38. Spiridonov, E.M., Fedorov, T.O., and Ryakhovsky, V.M., Magmatic formations of the mountainous Crimea, Article 2, Byull. MOIP,Otd. Geol., 1990b, vol. 65, no. 6, pp. 102–112.

    Google Scholar 

  39. Svidlova, V.A., Kalinyuk, I.V., Bondar, M.N., et al., Seismicity of the Crimea in 2014, in Seimologicheskii Byulleten Ukrainy za 2014 g. (Seismological Bulletin of the Ukraine for 2014), Science Notes of the Crimean State University, Geography Section, 2014, pp. 7—69.

  40. Tikhotsky, S.A., Fokin, I.V., and Shur, D.Yu., Traveltime seismic tomography with adaptive wavelet parameterization, Izv., Phys. Solid Earth, 2011, no. 47, pp. 326–344. https://doi.org/10.1134/S1069351311030062

  41. Tugolesov, D.A., Gorshkov, A.S., Meissner, L.B., et al., Tektonika mezo-kainozoiskikh otlozhenii Chernomorskoi vpadiny (The Tectonics of the Meso-Cenozoic sediments in the Black Sea basin), Moscow: Nedra, 1985.

  42. Ulomov, V.I., Bogdanov, M.I., Pustovitenko, B.G., et al., Analysis of the seismic hazard of the Crimea and North Caucasus and adapting the obtained assessments to the GSZ-2014 set of maps, Inzhenernye Izyskaniya, 2015, no. 13, pp.12–27.

  43. Yanovskaya, T.B., The method for three-dimensional traveltime tomography based on smoothness of lateral velocity variations, Izv., Phys. Solid Earth, 2012, vol. 48, no. 5, pp. 363–374.

  44. Yanovskaya, T.B. and Ditmar, P.G., Smoothness criteria in surface wave tomography, Geophys. J. Int., 1990, vol. 102, pp. 63–72.

    Article  Google Scholar 

  45. Yegorova, T., Gobarenko, V., and Yanovskaya, T., Lithosphere structure of the Black Sea from 3D gravity analysis and seismic tomography, Geophys. J. Int., 2013, vol. 193, pp. 287–303.

    Article  Google Scholar 

  46. Yegorova, T.P., Baranova, E.P., Gobarenko, V.S., and Murovskaya, A.V., Crustal Structure of the Crimean Mountains along the Sevastopol–Kerch Profile from the results of DSS and local seismic tomography, Geotectonics, 2018, vol. 52, no. 4, pp. 468–484. https://doi.org/10.1134/S0016852118040027

  47. Yanovskaya, T.B., Gobarenko, V.S., and Yegorova, T.P., Subcrustal structure of the Black Sea basin from seismological data, Izv., Phys. Solid Earth, 2016, vol. 52, no. 1, pp. 14–28. https://doi.org/10.1134/S1069351316010109

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Gobarenko or T. P. Yegorova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobarenko, V.S., Yegorova, T.P. Seismic Tomography Model for the Crust of Southern Crimea and Adjacent Northern Black Sea. J. Volcanolog. Seismol. 14, 187–203 (2020). https://doi.org/10.1134/S0742046320030033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046320030033

Keywords:

Navigation