Skip to main content
Log in

A Tectonophysical Analysis of Earthquake Frequency—Size Relationship Types for Catastrophic Earthquakes in Central Asia

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

We performed a tectonophysical analysis of earthquake frequency–size relationship types for large Central Asian earthquakes in the regions of dynamical influence due to major earthquake-generating faults based on data for the last 100 years. We identified four types of frequency–size curves, depending on the presence/absence of characteristic earthquakes and the presence or absence of a downward bend in the tail of the curve. This classification by the shape of the tail in frequency–size relationships correlates well with the values of the maximum observed magnitude. Thus, faults of the first type (there are characteristic earthquakes, but no downward bend) with Mmax ≥ 8.0 are classified as posing the highest seismic hazard; faults with characteristic earthquakes and a bend, and with Mmax = 7.5–7.9, are treated as rather hazardous; faults of the third type with Mmax = 7.1–7.5 are treated as posing potential hazard; and lastly, faults with a bend, without characteristic earthquakes, and with a typical magnitude Mmax ≤ 7.0, are classified as involving little hazard. The tail types in frequency–size curves are interpreted using the model of a nonlinear multiplicative cascade. The model can be used to treat different tail types as corresponding to the occurrence/nonoccurrence of nonlinear positive and negative feedback in earthquake rupture zones, with this feedback being responsible for the occurrence of earthquakes with different magnitudes. This interpretation and clustering of earthquake-generating faults by the behavior the tail of the relevant frequency–size plot shows raises the question about the physical mechanisms that underlie this behavior. We think that the occurrence of great earthquakes is related to a decrease in effective strength (viscosity) in the interblock space of faults at a scale appropriate to the rupture zone size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C.R., Active Faulting in Northern Turkey, Div. Geol. Sci., Californ. Inst. Tech., 1969, pp. 32–34.

    Google Scholar 

  • Burtman, V.S., The Late Cenozoic geodynamics of Tibet, Tarima, and Tien Shan, Geotektonika, 2012, no. 3, pp. 18–46.

    Google Scholar 

  • Davison, Jr. F.C. and Scholz, C.H., Frequency-moment distribution of earthquakes in the Aleutian arc: a test of the characteristic earthquake model, Bulletin of the Seismological Society of America, 1985, vol. 75, no. 5, pp. 1349–1361.

    Google Scholar 

  • Dobrovol’skii, I.P., Teoriya podgotovki tektonicheskogo zemletryaseniya (A Theory of Precursory Processes Prior to Tectonic Earthquakes), Moscow: IFZ AN SSSR, 1991.

    Google Scholar 

  • Dobrovol’skii, I.P., Matematicheskaya teoriya podgotovki i prognoza tektonicheskogo zemletryaseniya (A Mathematical Theory of the Precursory Period and Prediction of Tectonic Earthquakes), Moscow: Fizmatlit, 2009.

    Google Scholar 

  • Gan Weijun and Xiao Genru, Present-day crustal motion GPS velocity field of central Asia, in Atlas of Seismotectonics in Central Asia, Beijing, 2013, pp. 41–42.

    Google Scholar 

  • Gao Xianglin, Plate dynamics context of seismotectonics in central Asia, in Atlas of Seismotectonics in Central Asia, Beijing, 2013, pp. 29–31.

    Google Scholar 

  • Gatinskii, Yu.G., Vladova, G.L., Prokhorova, T.V., and Rundkvist, D.V., The geodynamics of Central Asia and the prediction of catastrophic earthquakes, Prostranstvo i Vremya, 2011, vol. 3, no. 5, pp. 124–134.

    Google Scholar 

  • Gorbunova, E.A. and Sherman, S.I., The probability of large (M ≥ 7.5) earthquakes in the fault zones of Central Asia: A tectonophysical analysis, Geodinamika i Tektonofizika, 2016, vol. 7, no. 2, pp. 303–314.

    Article  Google Scholar 

  • Gutenberg, B. and Richter, C.F., Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 1944, vol. 34, pp. 185–188.

    Google Scholar 

  • Kagan, Y.Y., Observational evidence for earthquakes as a nonlinear dynamic process, Physica D: Nonlinear Phenomena, 1994, vol. 77, no. 1, pp. 160–192.

    Article  Google Scholar 

  • Kasahara, K., Earthquake Mechanics, Cambridge University Press, 1981.

    Google Scholar 

  • Kissin, I.G., Trigger processes: Methodological aspects, participation of fluids, in Triggernye effekty v geosistemakh (Trigger Effects in Geosystems), Moscow: GEOS, 2013, pp. 146–152.

    Google Scholar 

  • Kocharyan, G.G., Geomekhanika razlomov (Geomechanics of Faults), Moscow: GEOS, 2016.

    Google Scholar 

  • Kocharyan, G.G., Another word on possible prevention of earthquakes, in Triggernye effekty v geosistemakh (Trigger Effects in Geosystems), Proc. Third All-Russia seminar conference, IDG RAN, Moscow: GEOS, 2015, pp. 30–39.

    Google Scholar 

  • Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (The Dynamics of Deformation in Blocky Rock Massifs), Moscow: IKTs Akademkniga, 2003.

    Google Scholar 

  • Kostrov, B.V., Mekhanika ochaga tektonicheskogo zemletryaseniya (The Mechanics of the Rupture Zone of a Tectonic Earthquake), Moscow: Nauka, 1975.

    Google Scholar 

  • Koulakov, I., High-frequency P and S velocity anomalies in the upper mantle beneath Asia from inversion of worldwide travel time data, Journal of Geophysical Research, 2011, vol. 116, no. B4, B04301.

    Article  Google Scholar 

  • Laherrere, J. and Sornette, D., Stretched exponential distributions in nature and economy: “fat-tails” with characteristic scales, The European Physical Journal B-Condensed Matter and Complex Systems, 1998, vol. 2, no. 4, pp. 525–539.

    Article  Google Scholar 

  • Latousakis, J. and Drakopoulos, J.A., Modified formula for frequency-magnitude distribution, PAGEOPH, 1987, vol. 125, no. 5, pp. 753–764.

    Article  Google Scholar 

  • Levin, B.V. and Sasorova, E.V., Seismichnost’ Tikhookeanskogo regiona. Vyyavlenie global’ nykh zakonomernostei (Seismicity of the Pacific Region. Identification of Global Patterns), Moscow: Yanus-L, 2012.

    Google Scholar 

  • Lukk, A.A., The seismicity of the Pyandzh River basin and nonlinear shapes of the frequency-size curve, in Eksperimental’naya seismologiya (Experimental Seismology), Moscow: Nauka, 1971, pp. 297–313.

    Google Scholar 

  • Mogi, K., Pressure dependence of rock strength and transition from brittle fracture to ductile flow, Bull. Earth. Res. Inst., 1966, vol. 44, pp. 215–232.

    Google Scholar 

  • National Earthquake Information Center (NEIC), 2016. Available from: http://earthquake.usgs.gov

  • Pacheco, J.F., Scholz, C.H., and Sykes, L.R., Changes in frequency-size relationship from small to large earthquakes, Nature, 1992, vol. 355, pp. 71–73.

    Article  Google Scholar 

  • Papadopoulos, G.A., Skafida, H.G., and Vassiliou, I.T., Nonlinearity of the magnitude-frequency relation in the Hellenic Arc.Trench System and the characteristic earthquake model, Journal of Geophysical Research, 1993, vol. 98, no. B10, pp. 17 737–17 744.

    Article  Google Scholar 

  • Pisarenko, V.F. and Rodkin, M.V., Raspredeleniya s tyazhelymi khvostami: prilozheniya k analizu katastrof (Distributions with Heavy Tails: Applications to the Analysis of Catastrophes), Vychislitel’naya Seismologiya, 38, Moscow: GEOS, 2007.

    Google Scholar 

  • Pisarenko, V. and Rodkin, M., Heavy-Tailed Distributions in Disaster Analysis. Advances in Natural and Technological Hazards Research, vol. 30, Dordrecht, Heidelberg, London, N. Y.: Springer, 2010.

    Book  Google Scholar 

  • Pisarenko, V. and Rodkin, M., Statistical Analysis of Natural Disasters and Related Losses, Springer Briefs in Earth Sciences, Dordrecht, Heidelberg, London, N. Y.: Springer, 2014.

    Book  Google Scholar 

  • Purcaru, G., A new magnitude-frequency relation for earthquakes and a classification of relation types, Ceophys. J. R. astr. Soc. 1975, vol. 42, pp. 61–79.

    Article  Google Scholar 

  • Qinghua Han, Lichen Wang, Jie Xua, Carpinteri, A., and Lacidogna, G., A robust method to estimate the bvalue of the magnitude-frequency distribution of earthquakes, Chaos, Solitons and Fractals, 2015, vol. 81 pp. 103–110.

    Article  Google Scholar 

  • Rebetskii, Yu.L., Tektonicheskie napryazheniya i prochnost’ prirodnykh massivov (Tectonic Stresses and the Strength of Natural Rock Massifs), Moscow: Akademkniga, 2007.

    Google Scholar 

  • Riznichenko, Yu.V., Problemy seismologii (Problems in Seismology), Moscow: Nauka, 1985.

    Google Scholar 

  • Rodkin, M.V., A model of seismicity as a set of avalanchelike relaxation episodes that occur on the set of metastable states, Fizika Zemli, 2011, no. 10, pp. 18–26.

    Google Scholar 

  • Rodkin, M.V., Pisarenko, V.F., Ngo Thi Ly, and Rukavishnikova, T.A., On possible occurrences of the law governing the distribution of rare great earthquakes, Geodinamika i Tektonofizika, 2014, vol. 5, no. 4, pp. 893–904.

    Article  Google Scholar 

  • Rodkin, M.V., Ngo Thi Ly, and Labuntsova, L.M., Expanding the multiplicative cascade model to describe the recurrence of great earthquakes in application to the seismicity of Southeast Asia, Geofizicheskie Issledovaniya, 2015, vol. 16, no. 2, pp. 59–69.

    Google Scholar 

  • Sadovskii, M.A., Bolkhovitinov, L.G., and Pisarenko, V.F., Deformirovanie geofizicheskoi sredy i seismicheskii protsess (Deformation in the Geophysical Medium and the Seismic Process), Moscow: Nauka, 1987.

    Google Scholar 

  • Schwartz, D.P. and Coppersmith, K.J., Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones, Journal of Geophysical Research, 1984, vol. 89, no. B7, pp. 5681–5698.

    Article  Google Scholar 

  • Seminskii, K.Zh., Tectonophysical patterns in lithospheric destruction: The Himalayan compression zone, Tikhookeanskaya Geologiya, 2001, vol. 20, no. 6, pp. 17–30.

    Google Scholar 

  • Sherman, S.I., Strain waves as a trigger mechanism for seismic activity in seismic zones of continental lithosphere, Geodinamika i Tektonofizika, 2013, vol. 4, no. 2, pp. 83–117.

    Article  Google Scholar 

  • Sherman, S.I., Seismicheskii protsess i prognoz zemletryasenii: tektonofizicheskaya kontseptsiya (The Seismic Process and Earthquake Prediction: A Tectonophysical Concept), Novosibirsk: Akademicheskoe Izdatel’stvo Geo, 2014.

    Google Scholar 

  • Sherman, S.I., Genetic sources and tectonophysical regularities of divisibility of the lithosphere into blocks of various ranks at different stages of its formation: tectonophysical analysis, Geodynamics & Tectonophysics, 2015, vol. 6, no. 3, pp. 387–408.

    Article  Google Scholar 

  • Sherman, S.I., Tectonophysical criteria for the generation of rupture zones of large earthquakes in the seismic zones of Central Asia, Geodinamika i Tektonofizika, 2016, vol. 6, no. 4, pp. 495–512.

    Article  Google Scholar 

  • Sherman, S.I., Berzhinskii, Yu.A., Pavlenov, V.A., and Aptikaev, F.F., Regional’nye shkaly seismicheskoi intensivnosti. Opyt sozdaniya shkaly dlya Pribaikal’ya (Regional Scales of Seismic Intensity: Developing a Scale for the Baikal Region), Novosibirsk: SO RAN, Filial GEO, 2003.

    Google Scholar 

  • Sherman, S.I., Bornyakov, S.A., and Buddo, V.Yu., Oblasti dinamicheskogo vliyaniya razlomov (rezul’nany modelirovaniya) (Areas of Dynamic Influence of Faults: Modeling Results), Novosibirsk: Nauka, SO AN SSSR, 1983.

    Google Scholar 

  • Sherman, S.I., Ma Jin, and Gorbunova, E.A., Recent strong earthquakes and seismotectonics in Central Asia, Geodynamics & Tectonophysics, 2015, vol. 6, no. 4, pp. 409–436.

    Article  Google Scholar 

  • Shi-Jun Chen, Zhi-Cai Wang, and Jiu-Qing Tao, Nonlinear magnitude frequency relation and two types of seismicity systems, Acta Seismologica Sinica, 1998, vol. 11, no. 2, pp. 207–218.

    Article  Google Scholar 

  • Sinadinovski, C. and McCue, K.F., Recurrence relationships for Australian earthquakes, AEES 2001 Canberra Conference Proceedings, 2001, Paper 25.

    Google Scholar 

  • Sobolev, G.A., Osnovy prognoza zemletryasenii (Principles of Earthquake Prediction), Moscow: Nauka, 1993.

    Google Scholar 

  • Sobolev, G.A., Kontseptsiya predskazuemosti zemletryasenii na osnove dinamiki seismichnosti pri triggernom vozdeistvii (The Concept of Earthquake Predictability Based on the Dynamics of Seismicity Excited by Trigger Action), Moscow: IFZ RAN, 2011.

    Google Scholar 

  • Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Earthquake Physics and Precursors), Moscow: Nauka, 2003.

    Google Scholar 

  • Stepashko, A.A., Seismodynamics and a deep source responsible for the North China zone of large earthquakes, Geodinamika i Tektonofizika, 2011, vol. 2, no. 4, pp. 341–355.

    Article  Google Scholar 

  • Stirling, M.W., Wesnousky, S.G., and Shimazaki, K., Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults: a global survey, Geophys. J. Int., 1996, vol. 124, pp. 833–868.

    Article  Google Scholar 

  • Ulomov, V.I. and Shumilina, L.S., Komplekt kart obshchego seismicheskogo raionirovaniya territorii Rossiiskoi Federatsii — OSR-97. Masshtab1: 8000000. Ob”yasnitel’naya zapiska i spisok gorodov i naselennykh punktov, raspolozhennykh v seismoopasnykh raionakh (A Set of General Seismic Zonation Maps for the Area of the Russian Federation (OSR-97). Scale 1: 8000000. An Explanatory Note and a List of Cities and Other Population Centers Situated in Earthquake-Prone Regions), Moscow: OIFZ, 1999.

    Google Scholar 

  • Vikulin, A.V. and Ivanchin, A.G., On the modern concept of a blocky hierarchical structure of the geologic medium and some of its consequences for geosciences, Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2013, no. 3, pp. 67–84.

    Google Scholar 

  • Vostrikov, G.A., Svyaz’ parametrov grafika povtoryaemosti, seismicheskogo techeniya i ochaga zemletryaseniya (Relationships between Parameters of the Recurrence Curve, Seismic Flow, and Earthquake Rupture Zones), Trudy GIN RAN, 1994, no. 482.

    Google Scholar 

  • Wang S. and Zhang, Z., Plastic-flow waves (slow waves) and seismic activity in Central-Eastern Asia, Earthquake Research in China, 2005, vol. 1, pp. 74–85.

    Google Scholar 

  • Wesnousky, S.G., Scholz, C.H., Shimazaki, K., and Matsuda, T., Integration of geological and seismological data for the analysis of seismic hazard: a case study of Japan, Bulletin of the Seismological Society of America, 1984, vol. 74, no. 2, pp. 687–708.

    Google Scholar 

  • Zhalkovskii, N.D., Zakon povtoryaemosti zemletryasenii i nekotorye ego sledstviya (The Law of Earthquake Recurrence and Some Consequences from It). Novosibirsk, 1988.

    Google Scholar 

  • Zhang Jiasheng, Aeromagnetic anomalies in central Asia and their tectonic implication, in Atlas of Seismotectonics in Central Asia, Beijing, 2013, pp. 25–26.

    Google Scholar 

  • Zhang Peizhen, Deng Qidong, Zhang Guomin, et al., Geology of the fault zones, Science in China, 2003, vol. 46, pp. 13–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Rodkin.

Additional information

Original Russian Text © S.I. Sherman, M.V. Rodkin, E.A. Gorbunova, 2017, published in Vulkanologiya i Seismologiya, 2017, No. 6, pp. 49–63.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherman, S.I., Rodkin, M.V. & Gorbunova, E.A. A Tectonophysical Analysis of Earthquake Frequency—Size Relationship Types for Catastrophic Earthquakes in Central Asia. J. Volcanolog. Seismol. 11, 434–446 (2017). https://doi.org/10.1134/S0742046317060057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046317060057

Navigation