Journal of Volcanology and Seismology

, Volume 10, Issue 1, pp 33–49 | Cite as

The classification of potassium basaltic trachyandesites that were discharged by the 2012–2013 parasitic eruption on Ploskii Tolbachik Volcano, Kamchatka using geochemical criteria

  • S. A. KhubunayaEmail author
  • T. S. Eremina
  • A. V. Sobolev


This study is concerned with the petrographic, mineralogic, and geochemical features in the K-high basaltic trachyandesites that were discharged by the 2012–2013 parasitic eruption on Ploskii Tolbachik Volcano. These K-high basaltic trachyandesites exhibit some obvious characteristics that testify to their suprasubduction origin. They are deeply differentiated rocks with strongly fractionated plagioclase. A study of the Sr, Nd, and Pb radiogenic isotope ratios in the K-high basaltic trachyandesites provided evidence of their mantle origin and of the fact that the crust has exerted no influence on their compositions. We performed a comparative analysis of the ratios of the concentrations for some incoherent elements in the K-high basaltic trachyandesites, as well as in intraplate, riftogenic, and island-arc moderate potassium basalts and basaltic andesites in relation to the concentrations of these elements in the primitive mantle. The geochemical features of these K-high basaltic trachyandesites classify them as belonging to the suprasubduction subalkaline formation of the potassium series.


Olivine Lava Flow Incompatible Element Basaltic Andesite Spider Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al’meev, R.R., The Geochemistry of Magmatism for Bezymyannyi Volcano: Evidence for a Mantle Source and the Conditions for Fractionation of Parental Magma, Extended Abstract of Cand. Sci. (Geol.–Mineral.) Dissertation, Moscow, 2005.Google Scholar
  2. Ariskin, A.A., Barmina, G.S., Ozerov, A.Yu., and Nil’sen, R.L., The genesis of high alumina basalts of Klyuchevskoi Volcano, Petrologiya, 1995, vol. 3, no. 5, pp. 496–521.Google Scholar
  3. Berzina, A.P., Berzina, A.N., Gimon, V.O., et al., The Shakhtaminskii porphyry Mo ore–magmatic system, eastern Transbaikalia: Age, sources, genetic features, Geologiya i Geofizika, 2013, vol. 54, no. 6, pp. 764–786.Google Scholar
  4. Bol’shoe treshchinnoe Tolbachinskoe izverzhenie, 1975–1976 gg., Kamchatka (The Great Tolbachik Fissure Eruption, 1975–1976, Kamchatka), Fedotov, S.A., Ed., Moscow: Nauka, 1984).Google Scholar
  5. Bravo, M.S. and O’Hara, M.J., Partial melting of phlogopite-bearing synthetic spinel and garnet lherzolites, Phys. Chem. Earth., 1975, vol. 9, pp. 3–854.CrossRefGoogle Scholar
  6. Cox, K.G., Bell, J.D., and Pankhurst, R.J., The Interpretation of Igneous Rocks, Springer, 1979).CrossRefGoogle Scholar
  7. Dvigalo, V.N., Svirid, I.Yu., and Shevchenko, A.V., The first quantitative estimates of parameters for the Tolbachik Fissure Eruption of 2012–2013 from aerophotogrammetric observations, J. Volcanol. Seismol., 2014, vol. 8, no. 5, pp. 261–268.CrossRefGoogle Scholar
  8. Ermakov, V.A., Formatsionnoe raschlenenie chetvertichnykh vulkanicheskikh porod (Formation Classification of Quaternary Volcanic Rocks), Moscow: Nedra, 1977.Google Scholar
  9. Ermakov, V.A. and Vazheevskaya, A.A., Ostryi and Ploskii Tolbachik volcanoes, Byull. Vulkanol. St., no. 49, Novosibirsk: Nauka, 1973, pp. 43–53.Google Scholar
  10. Ermakov, V.A., Gontovaya, L.I., and Senyukov, S.L., Tectonic setting and magma sources of the recent Tolbachik fissure eruption, Kamchatka Peninsula, in Geofizicheskie protsessy i biosfera (Geophysical Processes and the Biosphere), 2014, vol. 13, no. 1, pp. 5–33.Google Scholar
  11. Fedotov, S.A., Slavina, L.B., Senyukov, S.L., and Kuchai, M.S., Seismic processes and magma movements during the 1975–1976 Great Tolbachik Fissure Eruption and during the 2012–2013 Tolbachik Fissure Eruption, Kamchatka Peninsula, in Geofizicheskie protsessy i biosfera (Geophysical Processes and the Biosphere), 2014, vol. 13, no. 3, pp. 5–30.Google Scholar
  12. Flower, M.F., Mantle extrusion: a model for dispersed volcanism and DUPAL-like asthenosphere in East Asia and the West Pacific, in Mantle Dynamics and Plate Interactions in East Asia, Flower, M.F., Tamaki, K., and Hoang, N., Eds., Geodynamics, 1998, no. 27, pp. 3–85.Google Scholar
  13. Gill, J.B., Geochemistry of Viti Levu, Fiji, and its evolution as an island arc, Contr. Mineral. Petrol., 1970, vol. 27. pp.179–203.Google Scholar
  14. Gordeev, E.I., Murav’ev, Ya.D., Samoilenko, S.B., et al., The 2012–2013 Tolbachik Fissure Eruption. First results, Dokl. Akad. Nauk, 2013, vol. 452, no. 5, pp. 562–566.Google Scholar
  15. Gordeev, E.I., Karpov, G.A., Anikin, L.P., et al., Diamonds in the lavas of the Tolbachik Fissure Eruption, Kamchatka, Dokl. Akad. Nauk, 2014, vol. 454, no. 2, pp. 204–206.Google Scholar
  16. Green, D.H. and Ringwood, A.E., Genesis of calc-alkaline igneous rocks suite, Contr. Mineral. Petrol., 1968, vol. 18, no. 2, pp. 105–162.CrossRefGoogle Scholar
  17. Hofmann, A.W., Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust, Earth Planet. Sci. Lett., 1988, vol. 90, pp. 3–314.Google Scholar
  18. Holm, P.E., The geochemical fingerprints of different tectonomagmatic environments using hydromagmatophile element abundances of tholeiitic basalts and basaltic andesites, Chem. Geol., 1985, vol. 51, nos.3–4, pp. 303–323.CrossRefGoogle Scholar
  19. Interpretatsiya geokhimicheskikh dannykh (Interpretation of Geochemical Data), Sklyarov, E.V., Ed., Moscow: Intermet Inzhiniring, 2001).Google Scholar
  20. Karandashev, V.K., Turanov, A.N., Orlova, T.A., et al., Use of the inductively coupled plasma mass spectrometry for element analysis of environmental objects, Inorg. Mater., 2008, vol. 44, pp. 3–1500.CrossRefGoogle Scholar
  21. Kersting, A.B. and Arculus, R.J., Klyuchevskoy Volcano, Kamchatka, Russia: The role of high-flux recharged, tapped and fractionated magma chamber(s) in the genesis of high-A2O3 from high-MgO basalt, J. Petrol., 1994, vol. 35, no. 1, pp. 1–41.Google Scholar
  22. Khanchuk, A.I. and Ivanov, V.V., Mesozoic to Cenozoic geodynamic settings and gold mineralization in the Russian Far East, Geologiya i Geofizika, 1999, vol. 40, no. 11, pp. 1635–1645.Google Scholar
  23. Khubunaya, S.A., Bogoyavlenskii, S.O., Novgorodtseva, T.Yu., and Okrugina, A.M., The mineralogy of the Klyuchevskoi magnesian basalts depicting the fractionation in the magma chamber, Volcanology and Seismology, 1993, vol. 15, no. 3, pp. 315–338.Google Scholar
  24. Khubunaya, S.A. and Sobolev, A.V., Primary melts of calcalkaline magnesian basalts: Klyuchevskoi Volcano, Kamchatka, Dokl. Akad. Nauk, 1998, vol. 360, no. 1, pp. 100–102.Google Scholar
  25. Khubunaya, S.A., Gontovaya, L.I., Sobolev, A.I., and Nizkous, I.V., Magma chambers beneath the Klyuchevskoy volcanic group (Kamchatka), J. Volcanol. Seismol., 2007, vol. 1, no. 2, pp. 98–118.CrossRefGoogle Scholar
  26. Koloskov, A.V., Flerov, G.B., Perepelov, A.B., Melekestsev, I.V., Puzankov, M.Yu., and Filosofova, T.M., Evolution stages and petrology of the Kekuknai volcanic massif as reflecting the magmatism in backarc zone of Kuril–Kamchatka island arc system. Part 1. Geological setting and geochemistry of volcanic rocks, J. Volcanol. Seismol., 2011, vol. 5, no. 5, pp. 312–334.CrossRefGoogle Scholar
  27. Lee Cin-Ty, A., Luffi, P., Plank, T., et al., Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas, Earth and Planetary Science Letters, 2009. doi:10.1016/j. epsl.2008.12.020.Google Scholar
  28. Markhinin, E.K., Stratula, D.S., and Abdurakhmanov, A.I., Undulating lava flows of Ploskii Tolbachik Volcano, Byul. Vulkanol. St., no. 49, Novosibirsk: Nauka, 1973, pp. 77–82.Google Scholar
  29. Mironov, N.L., The Origin and Evolution of Klyuchevskoi Magmas from the Evidence Furnished by Studies of Melt Inclusions in Olivine, Extended Abstract of Cand. Sci. (Geol.–Mineral.) Dissertation, Moscow: GEOKHI RAN, 2009).Google Scholar
  30. Mironov, N.L. and Portnyagin, M.V., The concentrations of H2O and CO2 in primary magmas of Klyuchevskoi Volcano based on studies of melt and fluid inclusions in olivine, Geologiya i Geofizika, 2011, vol. 52, no. 11, pp. 1718–1735.Google Scholar
  31. Mysen, B. and Boettcher, A.L., Melting of hydrous mantle: II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotites at high pressure and high temperatures as a function of controlled activities of water, hydrogen and carbon dioxide, J. Petrol., 1975, vol. 16, pp. 3–593.Google Scholar
  32. Pearce, J.A., Stern, R.J., Bloomer, S.H., and Fryer, P., Geochemical mapping of the Mariana arc–basin system: Implication for nature and distributions of subducted components, Geochemistry, Geophysics, Geosystems (G3), 2005, vol. 6. doi:10.1029/2004GC000895.Google Scholar
  33. Perepelov, A.B., The Geochemistry of Late Cenozoic High Potassium Volcanic Series in the Kamchatka Island Arc System, Extended Abstract of Cand. Sci. (Geol.–Mineral.) Dissertation, Irkutsk, 1989).Google Scholar
  34. Perepelov, A.B., Neogene subalkaline magmatism of Kamchatka Sredinnyi mountain range: stages in inversion of island-arc and riftogenic geodynamic regimes (Teklektunup), in Plyumy i problema glubinnykh istochnikov shchelochnogo magmatizma (Plumes and the Problem of Deep Sources for Alkaline Magmatism), Irkutsk, 2003, pp. 242–278.Google Scholar
  35. Perepelov, A.B., Neogene to Quaternary shoshonite–latite magmatism of Kamchatka’s Sredinnyi mountain range: Tekletunup Volcano (geochemistry, petrology, geodynamic setting), Vulkanol. Seismol., 2005, no. 1, pp. 3–36.Google Scholar
  36. Perepelov, A.B., Cenozoic Magmatism of Kamchatka during Changes of Geodynamic Settings, Extended Abstract of Dr. Sci. (Geol.–Mineral.) Dissertation, Irkutsk, 2014).Google Scholar
  37. Perepelov, A.B., Puzankov, M.Yu., Ivanov, A.V., et al., Basanites of Mt. Khukhch—First mineralogic and geochemical data on Neogene K–Na alkaline magmatism in western Kamchatka, Dokl. Akad. Nauk, 2006, vol. 408, no. 6, pp. 795–799.Google Scholar
  38. Perepelov, A.B., Puzankov, M.Yu., Ivanov, A.V., et al., Neogene basanites of western Kamchatka: Mineralogical and geochemical features and the geodynamic setting, Petrologiya, 2007, vol. 15, no. 5, pp. 524–546.Google Scholar
  39. Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya (Petrographic Code of Russia. Magmatic, Metamorphic, Metasomatic, and Impact Formations), 3rd Ed., rev. and suppl., St. Petersburg: VSEGEI, 2009.Google Scholar
  40. Piip, B.I., A new parasitic crater on Tolbachik Volcano, Byul. Vulkanol. St., no. 13, Moscow: AN SSSR, 1946, pp. 10–21.Google Scholar
  41. Roshchina, I.A., Shevaleevskii, I.D., Korovkina, N.A., et al., X-ray fluorescence analysis of rock samples of varying composition, Sovetskaya Geologiya, 1971, no. 10, pp. 3–53.Google Scholar
  42. Sobolev, A.V., Sobolev, S.V., Kuz’min, D.V., et al., A mechanism for the generation of Siberian meimechites and why they are related to traps and kimberlites, Geologiya i Geofizika, 2009, vol. 50, no. 12, pp. 1293–1334.Google Scholar
  43. Sun, S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Magmatism in the Ocean Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. London Spec. Publ., 1989, vol. 42, pp. 3–345.Google Scholar
  44. Tatsumi, Y., Hamilton, D.L., and Nesbitt, R.W., Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from highpressure experiments and natural rocks, J. Volcanol. Geotherm. Res., 1994, vol. 29, pp. 3–309.Google Scholar
  45. Volynets, O.N., Petrology and Geochemical Classification of Volcanic Series in a Present-Day Island Arc System, Extended Abstract of Dr. Sci. (Geol.–Mineral.) Dissertation, Moscow, 1993).Google Scholar
  46. Volynets, O.N., Antipin, V.S., Perepelov, A.B., et al., The geochemistry of volcanic series of an island arc system in application to geodynamics: Kamchatka, Geologiya i Geofizika, 1990, no. 5, pp. 3–13.Google Scholar
  47. Volynets, O.N., Koloskov, A.V., Vinogradov, V.I., et al., Isotope composition of strontium and oxygen of the Late Cenozoic K–Na alkaline basalts of the intraplate geochemical type, Kamchatka, Petrologiya, 1995, vol. 3, no. 2, pp. 207–213.Google Scholar
  48. Volynets, O.N., Karpenko, S.F., Keu, R.U., and Gorring, M., The isotope composition of Late Neogene K–Na alkaline basaltoids in eastern Kamchatka: Signature of heterogeneity at the mantle source, Geokhimiya, 1997, no. 10, pp. 3–1018.Google Scholar
  49. Volynets, O.N., Melekestsev, I.V., Ponomareva, V.V., and Yogodzinskii, J.M., Kharchinskii and Zarechnyi Volcanoes, unique centers of Late Pleistocene magnesian basalts in Kamchatka: Composition of erupted rocks, Volcanology and Seismology, 1999, no. 1, pp. 3–66.Google Scholar
  50. Volynets, A.O., Mel’nikov, D.V., and Yakushev, A.I., First data concerning the composition of ejecta discharged by the Tolbachik Fissure Eruption named after the 50-year anniversary of the Institute of Volcanology and Seismology, Kamchatka, Dokl. Akad. Nauk, 2013, vol. 452, no. 3, pp. 303–307.Google Scholar
  51. Wood, D.A., A variably veined suboceanic mantle-genetic significance for mid-ocean ridge basalts from geochemical evidence, J. Geology, 1979, vol. 7, no. 3, pp. 499–503.CrossRefGoogle Scholar
  52. Wright, T.L. and Doherti, P.C., A linear programming and least squares computer method for solving petrologic mixing problem, Geol. Soc. Am. Bull., 1970, vol. 81, no. 7, pp. 95–106.Google Scholar
  53. Zelenski, M., Malik, N., and Taran, Yu., Emissions of trace elements during the 2012–2013 effusive eruption of Tolbachik volcano, Kamchatka: Enrichment factors, partition coefficients and aerosol contribution, J. Volcanol. Geotherm. Res., 2014, vol. 285, pp. 3–149.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. A. Khubunaya
    • 1
    Email author
  • T. S. Eremina
    • 1
  • A. V. Sobolev
    • 2
  1. 1.Institute of Volcanology and Seismology, Far East BranchRussian Academy of SciencesPetropavlovsk-KamchatskiiRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations