Skip to main content
Log in

Giant gas-rich hydrothermal systems and their role in the generation of vapor-dominated geothermal fields and ore mineralization

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

This paper characterizes certain unique geological structures on the earth, viz., giant gas-rich hydrothermal systems with major vapor-dominated geothermal fields that are generated beneath them during the present phase of evolution. A review of the relevant literature and materials of our own research are used to show that such systems are formed in zones of deep-seated faults at junctions of oceanic and continental plates, in structures of volcanic island arcs, and in areas of crustal tectono-magmatic activity. The systems extend throughout the crustal thickness and possess enormous geothermal and ore potentials. It was found that in these systems the ascending high-temperature gas-water fluid, as well as all types of mixed waters, and new mineral compounds in the hypergenesis zone of geothermal anomalies, all take part in the transport, accumulation, and rearrangement of complex compounds of many metals (Fe, Al, Ti, Au, Ag, Hg, As, Sb, and others). It was inferred that gas-rich hydrothermal systems and the vapor-dominated geothermal fields that are formed beneath them reflect the conditions for the generation of mesothermal and epithermal gold and complex ores and of Au-Ag-Cu-Mo porphyric deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abkadyrov, I.F., Gorbatikov, A.V., Stepanova, M.Yu., and Bukatov, Yu.Yu., Applications of the microseismic sounding method to geothermal fields: Nizhne-Koshelevskii thermal anomaly, southern Kamchatka, in Materialy IX regional’noi molodezhnoi nauchnoi konferentsii “Prirodnaya sreda Kamchatki”, Petropavlovsk-Kamchatskii, 12–13 aprelya 2010 g. (Proc. IX regional conference of young researchers “Natural Environment of Kamchatka”, Petropavlovsk-Kamchatskii, April 12–13, 2010), Petropavlovsk-Kamchatskii: IViS DVO RAN, 2010, pp. 49–60.

    Google Scholar 

  • Abrenica, A., Harijoko, A., Kusumah, Y.I., and Bogie, I., Characteristics of hydrothermal alteration in part of the Northern vapor-dominated reservoir of the Wayang Windu geothermal field, West Java, in Proc. World Geothermal Congress 2010, Bali, Indonesia, 25–30 April, 2010.

  • Allis, R., Insights on the formation of vapor-dominated geothermal systems, in Proc. World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28–June 10, 2000, pp. 2489–2496.

  • Aprelkov, S.E., Tectonics and volcanic history of southern Kamchatka, Tektonika, 1971, no. 2, pp. 105–111.

    Google Scholar 

  • Bellani, S., Brogi, A., Lazzarotto, A., et al., Heat flow, deep temperatures and extensional structures in the Larderello Geothermal Field (Italy): Constraints on geothermal fluid flow, J. Volcanol. Geothermal Res., 2004, vol. 132, pp. 15–29.

    Article  Google Scholar 

  • Belousov, V.I., Rychagov, S.N., and Sugrobov, V.M., The North Paramushir Hydrothermal Magmatic System: Geological Structure, Conceptual Model, and Geothermal Reserves, Vulkanol. Seismol., 2002, no. 1, pp. 34–50.

    Google Scholar 

  • Benz, H.M., Zandt, G., and Oppenheimer, D.H., Lithospheric structure of northern California determined from teleseismic images of the upper mantle, J. Geophys. Res., 1992, vol. 97, pp. 4791–4807.

    Article  Google Scholar 

  • Bergfeld, D., Janik, C.J., and Goff, F., CO2 degassing from point-source locations in the Geysers-Clear Lake geothermal region of northern California, EOS Transactions AGU, 1997, vol. 78, p. 328.

    Google Scholar 

  • Bergfeld, D., Goff, F., and Janik, C.J., Carbon isotope systematics and CO2 source in the Geysers-Clear Lake region, northern California, USA, Geothermics, 2001, vol. 30, pp. 303–331.

    Article  Google Scholar 

  • Bernabini, M., Bertini, G., Cameli, G.M., et al., Gravity interpretation of Mt. Amiata geothermal area (Central Italy), in Proc. World Geothermal Congress, Florence, 18–31 May 1995, Florence, 1995, vol. 2, pp. 859–862.

    Google Scholar 

  • Bertani, R., Geothermal power generation in the World 2005–2010 Update Report, in Proc. World Geothermal Congress 2010, Bali, Indonesia, 25–30 April, 2010.

  • Bertani, R., Bertini, G., Cappetti, G., et al., An update of the Larderello-Travale/Radiocondoli deep geothermal system, in Proc. World Geothermal Congress 2005, Antalya, Turkey, 24–29 April, 2005.

  • Bogie, I., Kusumah, Y.I., and Wisnandary, M.C., Overview of the Wayang Windu geothermal field, West Java, Indonesia, Geothermics, 2008, vol. 37, pp. 347–365.

    Article  Google Scholar 

  • Capetti, G., Romagnoli, P., and Sabatelli, F., Geothermal power generation in Italy 2005–2009 update report, in Proc. World Geothermal Congress 2010, Bali, Indonesia, 24–30 April, 2010.

  • Casim, M., Ciuffi, S., Fiordelisi, A., and Mazotti, A., 3D seismic surveys and deep target detection in the Larderello-Travale geothermal field (Italy), in Proc. World Geothermal Congress 2010, Bali, Indonesia, 25–30 April, 2010.

  • Castillo, D.A. and Ellsworth, W.L., Seismotectonics of the San Andreas fault system between Point Arena and Cape Mendocino in northern California: implications for the development and evolution of a young transform, J. Geophys. Res., 1993, vol. 98, pp. 6543–6560.

    Article  Google Scholar 

  • Darma, S., Harsoprayitno, S., Setiawan, B., et al., Geothermal energy update: Geothermal energy development and utilization in Indonesia, in Proc. World Geothermal Congress 2010, Bali, Indonesia, 25–30 April, 2010.

  • Dickinson, W.R. and Snyder, W.S., Geometry of triple junctions related to San Andreas transform, J. Geophys. Res., 1979, vol. 84, pp. 561–572.

    Article  Google Scholar 

  • Dolgozhivushchii tsentr endogennoi aktivnosti Yuzhnoi Kamchatki (A Long-Lived Center of Endogenous Activity in Southern Kamchatka), Moscow: Nauka, 1980.

  • Dwikorianto, T., Abidin, Z., Kamah, Y., et al., Tracer injection evaluation in Kamojang geothermal field, West Java, Indonesia, in Proc. World Geothermal Congress 2005, Antalya, Turkey, 24–29 April, 2005.

  • Feofilaktov, S.O. and Nuzhdaev, I.A., New evidence for the distribution of soil temperature in the Verkhne-Koshelevskii steam jets area, in Materialy VII regional’noi molodezhnoi nauchnoi konferentsii “Prirodnaya sreda Kamchatki”, Petropavlovsk-Kamchatskii, 25 noyabrya 2009 g. (Proc. VII regional conference of young researchers “Natural Environment of Kamchatka”, Petropavlovsk-Kamchatskii, November 25, 2009), Petropavlovsk-Kamchatskii: KamGU im. V. Beringa, 2009, pp. 101–108.

    Google Scholar 

  • Feofilaktov, S.O. and Nuzhdaev, I.A., The deep structure of the Nizhne-Koshelevskii geothermal field from integrated data of microseismic sounding and gravity studies, in Materialy X regional’noi molodezhnoi nauchnoi konferentsii, Petropavlovsk-Kamchatskii, 12–13 aprelya 2011 g. (Proc. X regional conference of young researchers, Petropavlovsk-Kamchatskii, April 12–13, 2011), Petropavlovsk-Kamchatskii: KamGU im. V. Beringa, 2011, pp. 181–194.

    Google Scholar 

  • Fujimoto, K., Takahashi, M., Doi, N., and Kato, O., High permeabilities of Quaternary granites in Japan and its implications for mass and heat transfer in a magmatichydrothermal system, Water-Rock Interaction, Japan, 1998, vol. 9, pp. 227–230.

    Google Scholar 

  • Futa, K., Hedge, C.E., Hearn, B.C., and Donnely-Nolan, J.M., Strontium isotopes in the Clear Lake volcanics, in Research in the Geysers-Clear Lake Geothermal Area, US Geological Survey Professional Paper 1141, pp. 61–66.

  • The Geologic Development of the Japanese Islands, Minato Masao, Ed., Tokyo: Tsukiji Shokan Co., 1965.

    Google Scholar 

  • Geological Survey of Japan, Geology and Mineral Resources of Japan, Kawasaki: Geol. Surv. Japan, 1960.

  • Geologo-geofizicheskii atlas Kurilo-Kamchatskoi ostrovnoi sistemy (A Geological-Geophysical Atlas of the KurilKamchatka Island System), Sergeev, K.F. and Krasnyi, M.L., Eds., Leningrad: VSEGEI, 1987.

    Google Scholar 

  • Gianelli, G., Puxeddu, M., and Squarci, P., Structural setting of the Larderello-Travale geothermal region, Mem. Soc. Geol. Ital., 1978, vol. 19, pp. 469–476.

    Google Scholar 

  • Gianelli, G., Manzella, A., and Puxeddu, M., Crustal models of the geothermal areas of southern Tuscany (Italy), Tectonophysics, 1997, vol. 281, pp. 221–239.

    Article  Google Scholar 

  • Hadi, J., Harrison, C., Keller, J., and Rejeki, S., Overview of Darajat reservoir characterization, a volcanic hosted reservoir, in Proc. World Geothermal Congress, Antalya, Turkey, 2005.

  • Hanano, M. and Sakagawa, Y., Lateral steam flow revealed by a pressure build-up test at the Matsukawa vapordominated geothermal field, Japan, Geothermics, 1990, vol. 19, no. 1, pp. 29–42.

    Article  Google Scholar 

  • Hedenquist, J.W., Izawa, E., Arribas, A., and White, N.C., Epithermal Gold Deposits: Styles, Characteristics and Exploration, Resource Geology, 1996, Special Publication no. 1.

    Google Scholar 

  • Jennings, C.W., Preliminary Fault Activity Map of California, California Department of Mines and Geology Open-File Report, 1992, no. 92-03.

    Google Scholar 

  • Kononov, V.I., Geokhimiya termal’nykh vod oblastei sovremennogo vulkanizma (riftovykh zon i ostrovnykh dug) (The Geochemistry of Thermal Waters in Areas of Present-Day Volcanism: Rift Zones and Island Arcs, Trudy GIN, no. 379, Moscow: Nauka, 1983.

    Google Scholar 

  • Korzhinskii, D.S., Teoriya metasomaticheskoi zonal’nosti (A Theory of Metasomatic Zonality), Moscow: Nauka, 1982.

    Google Scholar 

  • Lachenbruch, A.H. and Sass, J.H., Heat flow and energetics of the San Andreas fault zone, J. Geophys. Res., 1980, vol. 85, pp. 6185–6222.

    Article  Google Scholar 

  • Ladygin, V.M. and Rychagov, S.N., The Baranskii Volcano hydrothermal system, Iturup Island: Block structure and the intensity of hydrothermal metasomatic alteration from petrophysical data, Vulkanol. Seismol., 1995, no. 5, pp. 28–44.

    Google Scholar 

  • Lebedev, M.M. and Dekusar, Z.B., Occurrences of Hydrocarbons in the Thermal Waters of Southern Kamchatka, Vulkanol. Seismol., 1980, no. 5, pp. 93–97.

    Google Scholar 

  • Lund, J.W., Gawell, K., Boyd, T.L., and Jennejohn, D., The United States country update 2010, Proc. World Geothermal Congress 2010, Bali, Indonesia, 25–30 April 2010.

  • McLaughlin, R.J., Moore, D.M., Sorg, D.H., and McKee, E.H., Multiple episodes of the hydrothermal circulation, thermal metamorphism, and magma injection beneath the Geysers steam field, California, Geol. Soc. Amer. Abs. with Prog., 1983, vol. 15, p. 417.

    Google Scholar 

  • Moore, J.N. and Gunderson, R.P., Fluid-inclusion and isotopic systematics of an evolving magmatic-hydrothermal system, Geoch. Cosmoch. Acta, 1995, vol. 59, pp. 3887–3907.

    Article  Google Scholar 

  • Moore, J.N., Adams, M.C., and Anderson, A.J., The fluidinclusion and mineralogic record of the transition from liquid- to vapor-dominated conditions in the Geysers geothermal system, California, Econ. Geology, 2000, vol. 95, pp. 1753–1773.

    Google Scholar 

  • Norton, D.L. and Hulen, J.B., Preliminary numerical analysis of the magma-hydrothermal history of the Geysers geothermal system, California, USA, Geothermics, 2001, vol. 30, pp. 211–234.

    Article  Google Scholar 

  • Nuzhdaev, A.A., New results from a study of the Verkhne- and Nizhne-Koshelevskii thermal anomalies, in Materialy VI regional’noi molodezhnoi nauchnoi konferentsii, Petropavlovsk-Kamchatskii, 26–27 noyabrya 2008 g. (Proc. VI regional conference of young researchers, Petropavlovsk-Kamchatskii, November 26–27, 2008), Petropavlovsk-Kamchatskii: KamGU im. V. Beringa, 2008, pp. 43–49.

    Google Scholar 

  • Pandeli, E., Gianelli, G., Puxeddu, M., and Elter, F.M., The Paleozoic basement of the northern Apennines: Stratigraphy, tectono-metamorphic evolution and alpine hydrothermal processes, Mem. Soc. Geol. Ital., 1994, vol. 48, pp. 627–654.

    Google Scholar 

  • Pisareva, M.V., The Zone of Native Steam in the Nizhne-Koshelevskii Geothermal Field, Vulkanol. Seismol., 1987, no. 2, pp. 52–63.

    Google Scholar 

  • Polyak, V.G., Tolstikhin, I.N., and Yakutseni, V.P., The Isotope Composition of Helium and the Heat Flow: The Geochemical and Geophysical Aspects of Tectogenesis, Geotektonika, 1979, no. 5, pp. 3–23.

    Google Scholar 

  • Pozdeev, A.I. and Nazhalova, I.N., The geology, hydrodynamics, and the oil and gas potential of the Kosheleva steam-water field in Kamchatka, J. Volcanol. Seismol., 2008, vol. 2, no. 3, pp. 170–183.

    Article  Google Scholar 

  • Pramono, B. and Colombo, D., Microearthquake characteristics in Darajat geothermal field, Indonesia, in Proc. World Geothermal Congress 2005, Antalya, Turkey, 24–29 April, 2005. Prognoznaya otsenka rudonosnosti vulkanogennykh formatsii (Prediction of Ore Potential for Volcanogenic Formations), Moscow: Nedra, 1977.

    Google Scholar 

  • Pruess, K., A quantitative model of vapor-dominated geothermal reservoirs as heat pipes in fractured porous rock, Trans. Geotherm. Resourc. Counc., 1985, vol. 9(II), pp. 353–361.

    Google Scholar 

  • Rejeki, S., Hadi, J., and Suhayati, I., Porosity study for detail reservoir characterization in Darajat geothermal field, West Java, Indonesia, Proc. World Geothermal Congress 2005, Antalya, Turkey, 24–29 April, 2005.

  • Rejeki, S., Rohrs, D., Nordquist, G., and Fitriyanto, A., Geologic conceptual model update of the Darajat geothermal field, Indonesia, Proc. World Geothermal Congress 2010, Bali, Indonesia, 25–30 April, 2010.

  • Reutter, K.J., Giese, P., and Closs, H., Lithospheric split in descending plate: Observations from the northern Apennines, Tectonophysics, 1980, vol. 64, pp. 1–11.

    Article  Google Scholar 

  • Reyes, A.G., Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment, J. Volcanol. Geothermal Res., 1990, vol. 43, pp. 279–309.

    Article  Google Scholar 

  • Rychagov, S.N., The Baranskii Volcano hydrothermal system, Iturup Island: A model of geological structure, Vulkanol. Seismol., 1993, no. 2, pp. 59–74.

    Google Scholar 

  • Rychagov, S.N., The Evolution of Hydrothermal Magmatic Systems at Island Arcs, Extended Abstract of D-r Sci. (Geol.-Mineral.) Dissertation, IGEM RAN, Moscow, 2003, p. 50.

    Google Scholar 

  • Rychagov, S.N., Hydrothermal-Magmatic Systems as the Basic Source for Energetic and Mineral Resources of Recent Volcanism Areas, Proc. World Geothermal Congress 2005, Antalya, Turkey, 24–29 April, 2005.

  • Rychagov, S.N. and Shchegol’kov, Yu.V., New mineral formations at the surface of pyrite grains at the Nizhne-Koshelevskii geothermal anomaly, southern Kamchatka, Rudy i Metally, 2011, no. 2, pp. 52–57.

    Google Scholar 

  • Rychagov, S.N., Glavatskikh, S.F., and Sandimirova, E.I., Ore and Silicate Magnetic Globules as Indicators of Fluid Regime of Mineral-and-Ore Formation in Present-Day Hydrothermal System of Baranskii Volcano (Iturup Island), Geol. Rudn. Mestorozhd., 1996, vol. 38, no. 1, pp. 31–40.

    Google Scholar 

  • Rychagov, S.N., Belousov, V.I., Glavatskikh, S.F., et al., The North Paramushir Hydrothermal Magmatic System: The Deep Geological Section and a Model of Present-Day Mineralization in Its Interiors, Vulkanol. Seismol., 2002, no. 4, pp. 3–21.

    Google Scholar 

  • Rychagov, S.N., Belousov, V.I., and Belousova, S.P., An Hierarchical System of Geothermal Mineralizing Systems. A New View of the Generation of Geothermal Energy in Areas of Present-Day Volcanism, in Vulkanizm i Geodinamika (Volcanism and Geodynamics), III All-Russia Symp. on Volcanology and Paleovolcanology, Ulan-Ude, 5–8 September 2006, Irkutsk: GIN SO RAN, 2006, vol. 3, pp. 761–766.

    Google Scholar 

  • Rychagov, S.N., Davletbaev, R.G., Kovina, O.V., and Koroleva, G.P., Characterization of the near-surface horizon of hydrothermal clays at the Nizhne-Koshelevskii and Pauzhetka geothermal fields, Vestnik KRAUNTs, Nauki o Zemle, 2008, no. 2, issue 12, pp. 116–134.

    Google Scholar 

  • Rychagov, S.N., Davletbaev, R.G., and Kovina, O.V., Hydrothermal clays and pyrite in geothermal fields: Their significance for the geochemistry of present-day endogenous processes in southern Kamchatka, J. Volcanol. Seismol., 2009, vol. 3, no. 2, pp. 105–120.

    Article  Google Scholar 

  • Rychagov, S.N., Sokolov, V.N., and Chernov, M.S., Hydrothermal clays as a highly dynamic colloid-dispersed mineralogic-geochemical system, Dokl Akad. Nauk, 2010a, vol. 435, pp. 806–809.

    Google Scholar 

  • Rychagov, S.N., Belousov, V.I., Kotenko, T.A., and Kotenko, L.V., Gas-hydrothermal system of the Ebeko Volcano (Paramushir Island) — Zone of ascending fluid flow in the structure of the North-Kuril geothermal deposit, Proc. World Geothermal Congress 2010, Bali, Indonesia, 25–29 April, 2010b.

  • Rychagov, S.N., Davletbaev, R.G., and Kovina, O.V., Cation migration in hydrothermal clays: The problem of mineralization criteria in gas-hydrothermal fluids of hydrothermal fields in southern Kamchatka, J. Volcanol. Seismol., 2012, vol. 6, no. 4, pp. 230–242.

    Article  Google Scholar 

  • Sekine, Y., Some notes on the metallogenic epochs and provinces of Japan, Earth Science, 1956, no. 29, pp. 9–19.

    Google Scholar 

  • Shigeno, H., Evolution history of the Kakkonda magmahydrothermal system, Japan, estimated through simplified-model numerical simulations, Proc. 25th Workshop on Geothermal Reservoir Engineering 2000, USA: Stanford University, 2000, pp. 135–142.

    Google Scholar 

  • Sofyan, Y., Daud, Y., Kamah, Y., and Ehara, S., Sustainable geothermal utilization deduced from mass balance estimation — A case study of Kamojang geothermal field, Indonesia, Proc. World Geothermal Congress 2010, Bali, Indonesia, 25–30 April 2010.

  • Stimac, J.A., Evolution of the Silicic Magmatic System at Clear Lake, California from 0.65 to 0.30 Ma, PhD Dissertation: Queens University, Kingston, Ontario, Canada, 1991.

    Google Scholar 

  • Stimac, J.A., Origin and significance of high-grade metamorphic xenoliths, Clear Lake, California, in Active Geothermal Systems and Gold-Mercury Deposits in the Sonoma-Clear Lake Volcanics Fields, California, Society of Economic Geologists Guidebook Series, 1993, vol. 16, pp. 171–189.

    Google Scholar 

  • Stimac, J.A., Goff, F., and Wohletz, K., Thermal modeling of the Clear Lake magmatic-hydrothermal system, California, USA, Geothermics, 2001, vol. 30, pp. 349–390.

    Article  Google Scholar 

  • Stimac, J., Baroek, M., Suminar, A., and Sagala, B., Integration of surface and well data to determine structural controls on permeability at Salak (Awibengkok), Indonesia, Proc. World Geothermal Congress 2010, Bali, Indonesia, 25–30 April 2010. Strategiya razvitiya toplivno-energeticheskogo potentsiala Dal’nevostochnogo ekonomicheskogo raiona do 2020 g. (The Strategy of Development for the Fuel and Energy Potential of the Far East Economic Region until 2020), Vladivostok: Dal’nauka, 2001.

    Google Scholar 

  • Struktura gidtotermal’noi sistemy (The Structure of a Hydrothermal System), Moscow: Nauka, 1993.

  • Sugino, H. and Akeno, T., Country update for Japan, in Proc. World Geothermal Congress 2010, Bali, Indonesia, 24–30 April, 2010.

  • Sugrobov, V.M., Geothermal reserves of Kamchatka, classification and forecast, in Izuchenie i ispol’zovanie geotermal’nykh resursov v vulkanicheskikh oblastyakh (The Study and Use of Geothermal Reserves in Volcanic Areas), Moscow: Nauka, 1979, pp. 26–35.

    Google Scholar 

  • Suhadolc, P. and Panza, G.F., The European-African collision and its effects on the lithosphere-asthenosphere system, Tectonophysics, 1988, vol. 146, pp. 59–66.

    Article  Google Scholar 

  • Sumintadireja, P., Sudarman, S., Mizinaga, H., and Ushijima, K., Mise-a-la-masse and gravity data surveys at the Kamojang geothermal field, in Proc. World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28–June 10, 2000, pp. 1777–1784.

  • Tamanyu, S., Alternative geothermal heat sources besides the youngest volcanism related magma chamber—Examples in the Hohi and Sengan geothermal areas in Japan, Geothermal Resources Council Transactions, 1991, vol. 15, pp. 47–51.

    Google Scholar 

  • Tamanyu, S. and Fujimoto, K., Hydrothermal and heat source model for the Kakkonda geothermal field, Japan, in Proc. World Geothermal Congress 2005, Antalya, Turkey, 24–29 April, 2005.

  • Tosha, T., Sugihara, M., and Nishi, Y., Revised hypocenter solutions for microearthquakes in the Kakkonda geothermal field, Japan, Geothermics, 1998, vol. 27, pp. 553–571.

    Article  Google Scholar 

  • Uchida, T., Akaku, K., Sasaki, M., Kamenosono, H., et al., Recent progress of NEDOs “Deep-seated geothermal resources survey” project, Geothermal Resources Council Transactions, 1996, vol. 20, pp. 643–648.

    Google Scholar 

  • Utami, P., Characteristics of the Kamodjang geothermal reservoir (West Java) as revealed by its hydrothermal alteration mineralogy, Proc. World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28–June 10, 2000, pp. 1921–1926.

  • Vakin, E.A., Dekusar, Z.B., Serezhnikov, A.I., and Spichenkova, M.V., The Hydrothermal Occurrences of the Koshelevskii Volcanic Massif, in Gidrotermal’nye sistemy i termal’nye polya Kamchatki (Hydrothermal Systems and Thermal Fields in Kamchatka), Vladivostok: DVNTs AN SSSR, 1976, pp. 58–84.

    Google Scholar 

  • Verdoya, M., Pasquale, V., and Chiozzi, P., Thermomechanical evolution and rheology of the northern sector of the Tyrrhenian-Apennines system, J. Volcanol. Geothermal Res., 2005, vol. 148, pp. 20–30.

    Article  Google Scholar 

  • Villa, I.M. and Puxeddu, M., Geochronology of the Larderello geothermal field: New data and the closure temperature issue, Contrib. Mineral. Petrol., 1994, vol. 315, pp. 415–426.

    Article  Google Scholar 

  • Walters, M. and Combs, J., Heat flow regime in the Geysers-Clear Lake region of northern California, USA, Trans. Geothermal Resources Council, 1989, vol. 13, pp. 491–502.

    Google Scholar 

  • Walters, M.A., Haizlip, J.R., Sternfeld, J.N., et al., A vapor-dominated reservoir exceeding 600[deg]F at the Geysers, Sonoma County, California, in Monograph on the Geysers geothermal field, Geotherm. Resourc. Counc. Spec. Rept., 1992, vol. 17, pp. 45–53.

    Google Scholar 

  • Zhatnuev, N.S., Mironov, A.G., Rychagov, S.N., and Gunin, V.I., Gidrotermal’nye sistemy s parovymi rezervuarami (Hydrothermal Systems with Vapor Reservoirs), Novosibirsk: SO RAN, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Rychagov.

Additional information

Original Russian Text © S.N. Rychagov, 2014, published in Vulkanologiya i Seismologiya, 2014, No. 2, pp. 3–28.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rychagov, S.N. Giant gas-rich hydrothermal systems and their role in the generation of vapor-dominated geothermal fields and ore mineralization. J. Volcanolog. Seismol. 8, 69–92 (2014). https://doi.org/10.1134/S0742046314020067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046314020067

Keywords

Navigation