Journal of Volcanology and Seismology

, Volume 7, Issue 2, pp 145–169 | Cite as

The evolutionary stages and petrology of the kekuknai volcanic massif reflecting the magmatism in the backarc zone of the kuril-kamchatka island arc system. Part II. petrologic and mineralogical features, petrogenesis model

  • A. V. KoloskovEmail author
  • G. B. Flerov
  • A. B. Perepelov
  • I. V. Melekestsev
  • M. Yu. Puzankov
  • T. M. Filosofova


The Kekuknai massif was formed in the course of tectono-magmatic activity that involved the origin of a shield volcano and a caldera depression with associated emplacement of extrusions that terminated in intense post-caldera areal volcanism. The mineralogical compositions of the massif’s rocks have been considered in detail. The use of previously known and newly developed indicator properties of rock-forming minerals allowed the reconstruction of the general picture of the magmatic melt evolution and conditions of rock crystallization (various fluid and water saturation levels, as well as the oxidation state of the system). Essentially island-arc or intraplate characteristics of the massif’s rock compositions are found at different stages of development of a single fluid-magmatic system. Decompression evolution of the parent deep-seated basanitic magma occurred via occurrence in intermediate magma chambers of daughter magmas of trachybasalt (pre-caldera stage) or hawaiite (areal volcanism) composition. Subsequent emanate-magmatic differentiation of these melts, combined with crystallization differentiation under changing P-T-conditions, resulted in the formation of the entire diversity of the Kekuknai rocks.


Olivine Andesite Basalt Cinder Cone Plagioclase Composition High Oxygen Fugacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bindeman, I.N. and Dubik, F.Yu., High-silica residual melt as a result of differentiation: Extrusive dacites of Mendeleev Volcano, Dokl. AN, 1990, vol. 312, no. 3, pp. 702–706.Google Scholar
  2. Feeley, T.C. and Dungan, M.A., Compositional and dynamic controls on mafic-silicic magma interactions at continental arc volcanoes: Evidence from Cordon El Guadal, Tatara-San Pedro, J. Petrol., 1996, vol. 37, no. 6, pp. 1547–1577.CrossRefGoogle Scholar
  3. Grib, E.N., Pyroxenes in the effusive-explosive complex of the Uzon-Geiser-Valley depression, eastern Kamchatka, Vulkanol. Seismol., 1997, no. 4, pp. 14–35.Google Scholar
  4. Koloskov, A.V., Anomalous magmatic zones at present-day island arc systems: The Koryak-Kamchatka volcanic zone, in Geodinamika, magmatizm i metallogeniya Vostoka Rossii (Geodynamics, Magmatism, and Metallogeny in Eastern Russia), Book 1, Khanchuk, A.I., Ed., Vladivostok: Dal’nauka, 2006, pp. 398–417.Google Scholar
  5. Koloskov, A.V., Puzankov, M.Yu., and Pirozhkova, E.S., Ultramafic Inclusions in Island Arc Basaltoids: The Problem of the Composition and Genesis of the Transitional “Crust-Mantle Mixture” Layer in Island Arc Systems, in Geodi-namika i vulkanizm Kurilo-Kamchatskoi ostrovoduzhnoi sistemy (The Geodynamics and Volcanism of the Kuril-Kamchatka Island Arc System), Petropavlovsk-Kamchatskii: IVGiG DVO RAN, 2001, pp. 123–152.Google Scholar
  6. Koloskov, A.V., Flerov, G.B., Perepelov, A.B., Melekestsev, I.V., Puzankov, M.Yu., and Filosofova, T.M., Evolution stages and petrology of the Kekuknai volcanic massif as reflecting the magmatism in backarc zone of Kuril-Kamchatka island arc system. Part 1. Geological position and geochemistry of volcanic rocks, J. Volcanol. Seismol., 2011, vol. 5, no. 5, pp. 312–334.CrossRefGoogle Scholar
  7. Martynov, Yu.A. and Chubarov, V.M., Pyroxenes as indicators for the genesis of the Eocene/Miocene contrasting volcanogenic formation in the lower Amur R. valley, Vulkanol. Seismol., 1982, no. 5, pp. 23–34.Google Scholar
  8. Naumov, V.B., Kovalenko, V.I., Babanskii, A.D., et al., Genesis of andesites as revealed by studies of melt inclusions in minerals, Petrologiya, 1997, vol. 5, no. 6, pp. 654–665.Google Scholar
  9. Panjasawatwong, Y., Danyushevsky, L.V., Crawford, A., et al., An experimental study of the effect of melt composition on plagioclase-melt equilibrium at 5 and 10 kbar: Implications for origin of magmatic high-An plagioclase, Contrib. Mineral. Petrol., 1995, vol. 118, pp. 420–432.CrossRefGoogle Scholar
  10. Perepelov, A.B., Puzankov, M.Yu., Ivanov, A.V., et al., Neogene Basanites of Western Kamchatka: Mineralogic and Geochemical Features and the Geodynamic Setting, Petrologiya, 2007, vol. 15, no. 5, pp. 524–546.Google Scholar
  11. Petrograficheskii kodeks (Petrographic Code) Bogatikov, O.A. et al., Eds., St. Petersburg, 2009, pp. 24–25.Google Scholar
  12. Ringwood, A.E., Composition and Petrology of the Earth’s Mantle, McGraw-Hill, 1975.Google Scholar
  13. Speidel, D.H. and Nofriger, R.H., P-T-Fo2 relations in the system Fe-O-MgO-SiO2, Am. J. Sci., 1968, vol. 266, no. 5, pp. 205–238.CrossRefGoogle Scholar
  14. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Magmatism in the Ocean Basins, Geol. Soc. Lond. Spec. Publ. Vol., Saunders, A.D. and Norry, M.J, Eds., 1989, vol. 42, pp. 313–345.Google Scholar
  15. Volynets, O.N., Geochemical types, petrology, and genesis of Late Cenozoic volcanic rocks from the Kurile-Kamchatka island-arc system, International Geology Review, 1994, vol. 36, pp. 373–405.CrossRefGoogle Scholar
  16. Volynets, O.N., Koloskov, A.V., Popolitov, E.I., et al., Geochemical features of olivines from different types of Quaternary basalts of Kamchatka and the Kuril Islands in connection with their petrogenesis, Geokhimiya, 1975, no. 3, pp. 412–419.Google Scholar
  17. Volynets, O.N. and Koloskov, A.V., Plagioklazy chetvertichnykh effuzivov i maloglubinnykh intruzivov Kamchatki (Plagioclases in Quaternary Effusive Rocks and Shallow Intrusive Bodies in Kamchatka), Novosibirsk: Nauka, 1976.Google Scholar
  18. Volynets, A. and Churikova, T., Woerner, G., et al., Mafic Late Miocene-Quaternary volcanic rocks in the Kamchatka back arc region: Implications for subduction geometry and slab history at the Pacific-Aleutian junction, Contrib. Mineral. Petrol., 2010, vol. 159, no. 5, pp. 659–687.CrossRefGoogle Scholar
  19. Whitaker, M.L., Nekvasil, H., Lindsley, D.H., et al., The Role of Pressure in Producing Compositional Diversity in Intraplate Basaltic Magmas, J. Petrol., 2006, vol. 48, no. 2, pp. 366–393.CrossRefGoogle Scholar
  20. Zinov’ev, V.I., Determination of plagioclase composition from chemical analyses of igneous rocks, Geol. Geofiz., 1964, no. 12, pp. 140–144.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. V. Koloskov
    • 1
    Email author
  • G. B. Flerov
    • 1
  • A. B. Perepelov
    • 2
  • I. V. Melekestsev
    • 1
  • M. Yu. Puzankov
    • 1
  • T. M. Filosofova
    • 1
  1. 1.Institute of Volcanology and Seismology, Far East BranchRussian Academy of SciencesPetropavlovsk-KamchatskiiRussia
  2. 2.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations