Skip to main content
Log in

Immunological Aspects of Reactivation of Latent Infections in Space Flight and Antarctica

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The complex of space flight (SF) factors can have a negative impact on the human organism, including innate and adaptive immunity. One of the negative effects of impaired functional activity of the immune system is a decrease of latent immunological control of infections. During short- and long-term SFs, reactivation of latent viruses was shown, while the virus was detected in body fluids for some time after returning to Earth. Despite the fact that in most cases reactivation was asymptomatic, there are fears that during long expeditions into deep space, reactivation of latent pathogens can lead to the development of diseases that are dangerous to the crewmembers’ health. There is a lot of data about the reactivation of viral pathogens during SF, but the reactivation of bacterial agents in cosmonauts has received almost no attention. Due to the complexity of conducting research in space, an important role is played by ground-based analog experiments that simulate space station conditions. One of the most significant analogs of SF is the long-term Antarctic expedition, which makes it possible to obtain unique information about the effect of isolation, increased mental, and physiological stress on the reactivation of latent pathogens. Currently, latency is increasingly considered as a symbiotic existence of a pathogen and host, during which the human body acquires additional resistance to certain infectious agents. Thus, an important task of the upcoming research is a comprehensive analysis of the personal immunological status during SF, establishing its relationship with the latent infections reactivation and developing systems for monitoring, preventing, and treating the negative consequences of reactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Jordan, M.C., Latent infection and the elusive cytomegalovirus, Rev. Infect. Dis., 1983, vol. 5, no. 2, p. 205.

    Article  CAS  PubMed  Google Scholar 

  2. Stevens, J.G., Latent characteristics of selected herpesviruses, Adv. Cancer Res., 1978, vol. 26, p. 227.

    Article  CAS  PubMed  Google Scholar 

  3. Babel, N., Brestrich, G., Gondek, L.P., et al., Clonotype analysis of cytomegalovirus-specific cytotoxic T lymphocytes, J. Am. Soc. Nephrol., 2009, vol. 20, no. 2, p. 344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Glaser, R., Strain, E.C., Tarr, K.L., et al., Changes in Epstein—Barr virus antibody titers associated with aging, Proc. Soc. Exp. Biol. Med., 1985, vol. 179, no. 3, p. 352.

    Article  CAS  PubMed  Google Scholar 

  5. Ison, M.G. and Hayden, R.T., Adenovirus, Microbiol. Spectr., 2016, vol. 4, no. 4. https://doi.org/10.1128/microbiolspec.DMIH2-0020-2015

  6. Neumann, R., Genersch, E., and Eggers, H.J., Detection of adenovirus nucleic acid sequences in human tonsils in the absence of infectious virus, Virus Res., 1987, vol. 7, no. 1, p. 93.

    Article  CAS  PubMed  Google Scholar 

  7. Hertzen, L.C., Role of persistent infection in the control and severity of asthma: focus on Chlamydia pneumoniae, Eur. Respir. J., 2002, vol. 19, no. 3, p. 546.

    Article  Google Scholar 

  8. Mackowiak, P.A., Microbial latency, Rev. Infect. Dis., 1984, vol. 6, no. 5, p. 649.

    Article  CAS  PubMed  Google Scholar 

  9. Mansel, J.K., Rosenow, E.C., Smith, T.F., and Martin, J.W., Mycoplasma pneumoniae pneumonia, Chest, 1989, vol. 95, no. 3, p. 639.

    Article  CAS  PubMed  Google Scholar 

  10. McCune, R.M., McDermott, W., and Tompsett, R., The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique: II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug, J. Exp. Med., 1956, vol. 104, no. 5, p. 763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parrish, N.M., Dick, J.D., and Bishai, W., Mechanism of latency in Mycobacterium tuberculosis, Trends Microbiol., 1998, vol. 6, no. 3, p. 107.

    Article  CAS  PubMed  Google Scholar 

  12. Jordan, M.C., Jordan, G.W., Stevens, J.G., and Miller, G., Latent herpesviruses of humans, Ann. Intern. Med., 1984, vol. 100, no. 6, p. 866.

    Article  CAS  PubMed  Google Scholar 

  13. Laing, K.J., Ouwendijk, W.J., Koelle, D.M., and Verjans, G.M., Immunobiology of varicella-zoster virus infection, J. Infect. Dis., 2018, vol. 218, no. 2, p. 68.

    Article  Google Scholar 

  14. Steain, M., Sutherland, J.P., Rodriguez, M., et al., Analysis of T cell responses during active varicella-zoster virus reactivation in human ganglia, J. Virol., 2014, vol. 88, no. 5, p. 2704.

    Article  PubMed  PubMed Central  Google Scholar 

  15. White, D.V., Beard, R.S., and Barton, E.S., Immune modulation during latent herpesvirus infection, Immunol. Rev., 2012, vol. 245, no. 1, p. 189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Virgin, H.W., Wherry, E.J., and Ahmed, R., Redefining chronic viral infection, Cell, 2009, vol. 138, no. 1, p. 30.

    Article  CAS  PubMed  Google Scholar 

  17. Selin, L.K., Brehm, M.A., and Naumov, Y.N., Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity, Immunol. Rev., 2006, vol. 211, no. 1, p. 164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barton E.S., Rajkarnikar S., Langston P.K. et al. Gamma herpesvirus latency differentially impacts the generation of primary versus secondary memory CD8+ T cells during subsequent infection, J. Virol., 2014, vol. 88, no. 21, p. 12740. https://doi.org/10.1128/jvi.02106-14

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sandalova, E., Laccabue, D., Boni, C., et al., Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans, PLoS Pathog., 2010, vol. 6, no. 8, p. e1001051.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barton, E.S., White, D.W., Cathelyn, J.S., et al., Herpesvirus latency confers symbiotic protection from bacterial infection, Nature, 2007, vol. 447, no. 7142, p. 326.

    Article  CAS  PubMed  Google Scholar 

  21. Nilsson, C., Linde, A., Montgomery, S.M., et al., Does early EBV infection protect against IgE sensitization? J. Allergy Clin. Immunol., 2005, vol. 116, no. 2, p. 438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Calvani, M., Alessandri, C., Paolone, G., et al., Correlation between Epstein—Barr virus antibodies, serum IgE and atopic disease, Pediatr. Allergy Immunol., 1997, vol. 8, no. 2, p. 91.

    Article  CAS  PubMed  Google Scholar 

  23. Crucian, B., Simpson, R.J., Mehta, S., et al., Terrestrial stress analogs for spaceflight associated immune system dysregulation, Brain Behav. Immun., 2014, vol. 39, p. 23.

    Article  CAS  PubMed  Google Scholar 

  24. Mehta, S.K., Laudenslager, M.L., Stowe, R.P., et al., Latent virus reactivation in astronauts on the international space station, NPJ Microgravity, 2017, vol. 3, p. 11.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Crucian, B., Babiak-Vazquez, A., Johnston, S., et al., Incidence of clinical symptoms during long-duration orbital spaceflight, Int. J. Gen. Med., 2016, vol. 9, p. 383.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mehta, S.K., Szpara, M.L., Rooney, B.V., et al., Dermatitis during spaceflight associated with HSV-1 reactivation, Viruses, 2022, vol. 14, no. 4, p. 789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. AlQarni, S., Al-Sheikh, Y., Campbell, D., et al., Lym-phomas driven by Epstein—Barr virus nuclear antigen-1 (EBNA1) are dependent upon Mdm2, Oncogene, 2018, vol. 37, no. 29, p. 3998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsai, M.-H., Lin, X., Shumilov, A., et al., The biological properties of different Epstein—Barr virus strains explain their association with various types of cancers, Oncotarget, 2017, vol. 8, no. 6, p. 10238.

    Article  PubMed  Google Scholar 

  29. Zhang, B., Kracker, S., Yasuda, T., et al., Immune surveillance and therapy of lymphomas driven by Epstein—Barr virus protein LMP1 in a mouse model, Cell, 2012, vol. 148, no. 4, p. 739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Balfour, H.H., Dunmire, S.K., and Hogquist, K.A., Infectious mononucleosis, Clin. Transl. Immunol., 2015, vol. 4, no. 2, p. e33.

  31. Dittmer, D., Lagunoff, M., Renne, R., et al., A cluster of latently expressed genes in Kaposi’s sarcoma-associated herpesvirus, J. Virol., 1998, vol. 72, no. 10, p. 8309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sin, S.-H. and Dittmer, D.P., Viral latency locus augments B-cell response in vivo to induce chronic marginal zone enlargement, plasma cell hyperplasia, and lymphoma, Blood, 2013, vol. 121, no. 15, p. 2952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jha, H.C., Banerjee, S., and Robertson, E.S., The role of gamma herpesviruses in cancer pathogenesis, Pathogens, 2016, vol. 5, no. 1, p. 18.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reynolds, R., Little, M.P., Day, S., et al., Cancer incidence and mortality in the USA astronaut corps, 1959–2017, Occup. Environ. Med., 2021, vol. 78, p. 869.

    Article  PubMed  Google Scholar 

  35. Akbar, A.N. and Fletcher, J.M., Memory T cell homeostasis and senescence during aging, Curr. Opin. Immunol., 2005, vol. 17, no. 5, p. 480.

    Article  CAS  PubMed  Google Scholar 

  36. Berger, R., Florent, G., and Just, M., Decrease of the lymphoproliferative response to varicella-zoster virus antigen in the aged, Infect. Immun., 1981, vol. 32, no. 1, p. 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khan, N., Hislop, A., Gudgeon, N., et al., Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection, J. Immunol., 2004, vol. 173, no. 12, p. 7481.

    Article  CAS  PubMed  Google Scholar 

  38. Mekker, A., Tchang, V.S., Haeberli, L., et al., Immune senescence: relative contributions of age and cytomegalovirus infection, PLoS Pathog., 2012, vol. 8, no. 8, p. e1002850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Messaoudi, I., Lemaoult, J., Guevara-Patino, J.A., et al., Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense, J. Exp. Med., 2004, vol. 200, no. 10, p. 1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fukuda, K., Straus, S.E., Hickie, I., et al., The chronic fatigue syndrome, a comprehensive approach to its definition and study, Ann. Intern. Med., 1994, vol. 121, no. 12, p. 953.

    Article  CAS  PubMed  Google Scholar 

  41. Iwakami, E., Arashima, Y., Kato, K., et al., Treatment of chronic fatigue syndrome with antibiotics: a pilot study assessing the involvement of Coxiella burnetii, Intern. Med., 2005, vol. 44, no. 12, p. 1258.

    Article  PubMed  Google Scholar 

  42. Loebel, M., Eckey, M., Sotzny, F., et al., Serological profiling of the EBV immune response in chronic fatigue syndrome using a peptide microarray, PLoS One, 2017, vol. 12, no. 6, p. e0179124.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Walch, C.M., Zainal, N.Z., Middleton, S.J., et al., A family history study of chronic fatigue syndrome, Psychiatr. Genet., 2001, vol. 11, no. 3, p. 123.

    Article  Google Scholar 

  44. Ariza, M.E., Myalgic encephalomyelitis, chronic fatigue syndrome, the human herpesviruses are back! Biomolecules, 2021, vol. 11, no. 2, p. 185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chia, J.K. and Chia, L.Y., Chronic Chlamydia pneumoniae infection: a treatable cause of chronic fatigue syndrome, Clin. Infect. Dis., 1999, vol. 29, no. 2, p. 452.

    Article  CAS  PubMed  Google Scholar 

  46. Nicolson, G.L., Gan, R., and Haier, J., Multiple co-infections (Mycoplasma, Chlamydia, human herpes virus-6) in blood of chronic fatigue syndrome patients: association with signs and symptoms, APMIS, 2003, vol. 111, no. 5, p. 557.

    Article  CAS  PubMed  Google Scholar 

  47. Nijs, J., Nicolson, G.L., Becker, P.D., et al., High prevalence of Mycoplasma infections among European chronic fatigue syndrome patients: examination of four Mycoplasma species in blood of chronic fatigue syndrome patients, FEMS Immunol. Med. Microbiol., 2002, vol. 34, no. 3, p. 209.

    Article  CAS  PubMed  Google Scholar 

  48. Cooper, G.S., Dooley, M.A., Treadwell, E.L., et al., Hormonal, environmental, and infectious risk factors for developing systemic lupus erythematosus, Arthritis Rheum., 1998, vol. 41, no. 10, p. 1714.

    Article  CAS  PubMed  Google Scholar 

  49. Iliopoulos, A.G. and Tsokos, G.C., Immunopathogenesis and spectrum of infections in systemic lupus erythematosus, Semin. Arthritis Rheum., 1996, vol. 25, no. 5, p. 318.

    Article  CAS  PubMed  Google Scholar 

  50. Kalden, J.R. and Gay, S., Retroviruses and autoimmune rheumatic diseases, Clin. Exp. Immunol., 1984, vol. 98, no. 1, p. 1.

    Article  Google Scholar 

  51. Sabbatini, A., Bombardieri, S., and Migliorini, P., Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein—Barr virus-encoded nuclear antigen EBNA I, Eur. J. Immunol., 1993, vol. 23, no. 5, p. 1146.

    Article  CAS  PubMed  Google Scholar 

  52. Zamansky, G.B., Sunlight-induced pathogenesis in systemic lupus erythematosus, J. Invest. Dermatol., 1985, vol. 85, no. 3, p. 179.

    Article  CAS  PubMed  Google Scholar 

  53. Uetrecht, J.P., Mechanism of drug-induced lupus, Chem. Res. Toxicol., 1988, vol. 1, no. 3, p. 133.

    Article  CAS  PubMed  Google Scholar 

  54. Shah, M., Adams-Huet, B., Kavanaugh, A., et al., Nutrient intake and diet quality in patients with systemic lupus erythematosus on a culturally sensitive cholesterol lowering dietary program, J. Rheumatol., 2004, vol. 31, no. 1, p. 71.

    PubMed  Google Scholar 

  55. Ansar, A.S., Penhale, W.J., and Talal, N., Sex hormones, immune responses, and autoimmune diseases: mechanisms of sex hormone action, Am. J. Pathol., 1985, vol. 121, no. 3, p. 531.

    Google Scholar 

  56. Poole, B.D., Scofield, R.H., Harley, J.B., and James, J.A., Epstein—Barr virus and molecular mimicry in systemic lupus erythematosus, Autoimmunity, 2006, vol. 39, no. 1, p. 63.

    Article  CAS  PubMed  Google Scholar 

  57. Munroe, M.E., Anderson, J.R., Gross, T.F., et al., Epstein—Barr functional mimicry: pathogenicity of oncogenic latent membrane protein-1 in systemic lupus erythematosus and autoimmunity, Front. Immunol., 2020, vol. 11, p. 606936.

    Article  CAS  PubMed  Google Scholar 

  58. Jog, N.J., Chakravarty, E.F., Guthridge, J.M., and James, J.A., Epstein—Barr virus interleukin 10 suppresses anti-inflammatory phenotype in human monocytes, Front. Immunol., 2018, vol. 9, p. 2198.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sairenji, T., Ohnishi, E., Inouye, S., and Kurata, T., Induction of interleukin-10 on activation of Epstein—Barr virus in EBV-infected B-cell lines, Viral Immunol., 1998, vol. 11, no. 4, p. 221.

    Article  CAS  PubMed  Google Scholar 

  60. Berner, B.R., Tary-Lehmann, M., Yonkers, N.L., et al., Phenotypic and functional analysis of EBV-specific memory CD8 cells in SLE, Cell. Immunol., 2005, vol. 235, p. 29.

    Article  CAS  PubMed  Google Scholar 

  61. Tsokos, G.C., Magrath, I.T., and Balow, J.E., Epstein—Barr virus induces normal B cell responses but defective suppressor T cell responses in patients with systemic lupus erythematosus, J. Immunol., 1983, vol. 131, no. 4, p. 1797.

    Article  CAS  PubMed  Google Scholar 

  62. McInnes, I.B. and Schett, G., The pathogenesis of rheumatoid arthritis, N. Engl. J. Med., 2011, vol. 365, no. 23, p. 2205.

    Article  CAS  PubMed  Google Scholar 

  63. Volkov, M., van Schie, K.A., and van der Woude, D., Autoantibodies and B cells: the ABC of rheumatoid arthritis pathophysiology, Immunol. Rev., 2020, vol. 294, no. 1, p. 148.

    Article  CAS  PubMed  Google Scholar 

  64. Beck, H.W. and Clausen, J., An epidemiological study on paramyxovirus antibody titers in multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis, Zentralbl. Bakteriol. Orig., A. 1977, vol. 238, no. 4, p. 431.

    CAS  PubMed  Google Scholar 

  65. Freimanis, G., Hooley, P., Ejtehadi, H.D., et al., A role for human endogenous retrovirus-K (HML-2) in rheumatoid arthritis: investigating mechanisms of pathogenesis, Clin. Exp. Immunol., 2010, vol. 160, no. 3, p. 340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tamori, A., Koike, T., Goto, H., et al., Prospective study of reactivation of hepatitis B virus in patients with rheumatoid arthritis who received immunosuppressive therapy: evaluation of both HBsAg-positive and HBsAg-negative cohorts, J. Gastroenterol., 2011, vol. 46, no. 4, p. 556.

    Article  CAS  PubMed  Google Scholar 

  67. Toussirot, E. and Roudier, J., Pathophysiological links between rheumatoid arthritis and the Epstein—Barr virus: an update, Joint Bone Spine, 2007, vol. 74, no. 5, p. 418.

    Article  CAS  PubMed  Google Scholar 

  68. Sriram, S., Stratton, C.W., Yao, S., et al., Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis, Ann. Neurol., 1999, vol. 46, no. 1, p. 6.

    Article  CAS  PubMed  Google Scholar 

  69. Dunn, N., Kharlamova, N., and Fogdell-Hahn, A., The role of herpesvirus 6A and 6B in multiple sclerosis and epilepsy, Scand. J. Immunol., 2020, vol. 92, no. 6, p. e12984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bjornevik, K., Cortese, M., Healy, B.C., et al., Longitudinal analysis reveals high prevalence of Epstein—Barr virus associated with multiple sclerosis, Science, 2022, vol. 375, no. 6578, p. 296.

    Article  CAS  PubMed  Google Scholar 

  71. Vaĭnshenker, Iu.I., Nuralova, I.V., and Onishenko, L.S., Chlamydial infection of the central nervous system: laboratory diagnosis and clinic and morphological features, Arkh. Patol., 2014, vol. 76, no. 1, p. 57.

    PubMed  Google Scholar 

  72. Hackstadt, T., Rockey, D.D., Heinzen, R.A., and Scidmore, M.A., Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane, EMBO J., 1996, vol. 15, no. 5, p. 964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khaki, M., Ghazavi, A., Ghasami, K., et al., Evaluation of viral antibodies in Iranian multiple sclerosis patients, Neurosciences, 2011, vol. 16, no. 3, p. 224.

    PubMed  Google Scholar 

  74. Ramroodi, N., Sanadgol, N., Ganjali, Z., et al., Monitoring of active human herpes virus 6 infection in Iranian patients with different subtypes of multiple sclerosis, J. Pathog., 2013, vol. 2013, p. 194932.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Behzad-Behbahani, A., Mikaeili, M.H., Entezam, M., et al., Human herpesvirus-6 viral load and antibody titer in serum samples of patients with multiple sclerosis, J. Microbiol. Immunol. Infect., 2011, vol. 44, no. 4, p. 247.

    Article  CAS  PubMed  Google Scholar 

  76. Ortega-Madueno, I., Garcia-Montojo, M., Dominguez-Mozo, M.I., et al., Anti-human herpesvirus 6A/B IgG correlates with relapses and progression in multiple sclerosis, PLoS One, 2014, vol. 9, no. 8, p. e104836.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Simpson, S., Taylor, B., Dwyer, D.E., et al., Anti-HHV-6 IgG titer significantly predicts subsequent relapse risk in multiple sclerosis, Mult. Scler., 2012, vol. 18, no. 6, p. 799.

    Article  CAS  PubMed  Google Scholar 

  78. Paulson, K.E., Zhu, S.N., Chen, M., et al., Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis, Circ. Res., 2010, vol. 106, no. 2, p. 383.

    Article  CAS  PubMed  Google Scholar 

  79. Tabas, I. and Lichtman, A.H., Monocyte—macrophages and T cells in atherosclerosis immunity, Immunity, 2017, vol. 47, no. 4, p. 621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alekperov, É.Z. and Nadzhafov, R.N., Contemporary concepts of the role of inflammation in atherosclerosis, Kardiologiia, 2010, vol. 50, no. 6, p. 88.

    CAS  PubMed  Google Scholar 

  81. Spagnoli, L.G., Bonanno, E., Sangiorgi, G., and Mauriello, A., Role of inflammation in atherosclerosis, J. Nucl. Med., 2007, vol. 48, no. 11, p. 1800.

    Article  PubMed  Google Scholar 

  82. Blum, A., Peleg, A., and Weinberg, M., Anti-cytomegalovirus (CMV) IgG antibody titer in patients with risk factors to atherosclerosis, Clin. Exp. Med., 2003, vol. 3, no. 3, p. 157.

    Article  CAS  PubMed  Google Scholar 

  83. Cherry, D.K., Burt, C.W., and Woodwell, D.A., National ambulatory medical care survey: 2001 summary, Adv. Data, 2003, vol. 337, p. 1.

    Google Scholar 

  84. Guetta, E., Scarpati, E.M., and DiCorleto, P.E., Effect of cytomegalovirus immediate early gene products on endothelial cell gene activity, Cardiovasc. Res., 2001, vol. 50, no. 3, p. 538.

    Article  CAS  PubMed  Google Scholar 

  85. Wang, B., Zhang, L., Zhang, T., et al., Chlamydia pneumoniae infection promotes vascular smooth muscle cell migration through a toll-like receptor 2-related signaling pathway, Infect. Immun., 2013, vol. 81, no. 12, p. 4583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chukkapalli, S.S., Ambadapadi, S., Varkoly, K., et al., Impaired innate immune signaling due to combined toll-like receptor 2 and 4 deficiency affects both periodontitis and atherosclerosis in response to polybacterial infection, Pathog. Dis., 2018, vol. 76, no. 8, p. fty076.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee, G.-L., Yeh, C.-C., Wu, J.-Y., et al., TLR2 promotes vascular smooth muscle cell chondrogenic differentiation and consequent calcification via the concerted actions of osteoprotegerin suppression and IL-6-mediated RANKL induction, Arterioscler. Thromb. Vasc. Biol., 2019, vol. 39, no. 3, p. 432.

    Article  CAS  PubMed  Google Scholar 

  88. Higuchi, M.d.L., Reis, M.M., Sambiase, N.V., et al., Coinfection with Mycoplasma pneumoniae and Chlamydia pneumoniae in ruptured plaques associated with acute myocardial infarction, Arq. Bras. Cardiol., 2003, vol. 81, no. 1, p. 12.

    Article  PubMed  Google Scholar 

  89. Roggerio, A., Sambiase, N.V., Palomino, S.A.P., et al., Correlation of bacterial coinfection versus matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 expression in aortic aneurysm and atherosclerosis, Ann. Vasc. Surg., 2013, vol. 27, no. 7, p. 964.

    Article  PubMed  Google Scholar 

  90. Crucian, B., Makedonas, G., and Sams, C.F., Countermeasures-based improvements in stress, immune system dysregulation and latent herpesvirus reactivation onboard the International Space Station—relevance for deep space missions and terrestrial medicine, Neurosci. Biobehav. Rev., 2020, vol. 115, p. 68.

    Article  CAS  PubMed  Google Scholar 

  91. Christeff, N., Gherbi, N., Mammes, O., et al., Serum cortisol and DHEA concentrations during HIV infection, Psychoneuroendocrinology, 1997, vol. 22, suppl. 1, p. S11.

    Article  CAS  PubMed  Google Scholar 

  92. Padgett, D.A., Loria, R.M., and Sheridan, J.F., Steroid hormone regulation of antiviral immunity, Ann. N.Y. Acad. Sci., 2000, vol. 917, p. 935.

    Article  CAS  PubMed  Google Scholar 

  93. Agha, N.H., Baker, F.L., Kun, H.E., et al., Salivary antimicrobial proteins and stress biomarkers are elevated during a 6-month mission to the International Space Station, J. Appl. Physiol., 2020, vol. 128, no. 2, p. 264.

    Article  CAS  PubMed  Google Scholar 

  94. Mehta, S.K., Laudenslager, M.L., Stowe, R.P., et al., Multiple latent viruses reactivate in astronauts during space shuttle missions, Brain Behav. Immun., 2014, vol. 41, p. 210.

    Article  CAS  PubMed  Google Scholar 

  95. Buchheim, J.-I., Matzel, S., Rykova, M., et al., Stress related shift toward inflammaging in cosmonauts after long-duration space flight, Front. Physiol., 2019, vol. 10, p. 85.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hauer, D., Schelling, G., Gola, H., et al., Plasma concentrations of endocannabinoids and related primary fatty acid amides in patients with post-traumatic stress disorder, PLoS One, 2013, vol. 8, no. 5, p. e62741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Campolongo, P., Roozendaal, B., Trezza, V., et al., Fat-induced satiety factor oleoyl ethanolamide enhances memory consolidation, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 19, p. 8027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Feuerecker, M., Hauer, D., Toth, R., et al., Effects of exercise stress on the endocannabinoid system in humans under field conditions, Eur. J. Appl. Physiol., 2012, vol. 112, no. 7, p. 2777.

    Article  CAS  PubMed  Google Scholar 

  99. Amerongen, A.V., Bolscher, J.G.M., and Veerman, E.C., Salivary mucins: protective functions in relation to their diversity, Glycobiology, 1995, vol. 5, no. 8, p. 733.

    Article  CAS  PubMed  Google Scholar 

  100. Fábián, T.K., Hermann, P., Beck, A., et al., Salivary defense proteins: their network and role in innate and acquired oral immunity, Int. J. Mol. Sci., 2012, vol. 13, no. 4, p. 4295.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bastian, A. and Schäfer, H., Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro, Regul. Pept., 2001, vol. 101, nos. 1–3, p. 157.

    Article  CAS  PubMed  Google Scholar 

  102. Daher, K.A., Selsted, M.E., and Lehrer, R.I., Direct inactivation of viruses by human granulocyte defensins, J. Virol., 1986, vol. 60, no. 3, p. 1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dorschner, R.A., Pestonjamasp, V.K., Tamakuwa-la, S., et al., Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus, J. Invest. Dermatol., 2001, vol. 117, no. 1, p. 91.

    Article  CAS  PubMed  Google Scholar 

  104. Radek, K. and Gallo, R., Antimicrobial peptides: natural effectors of the innate immune system, Semin. Immunopathol., 2007, vol. 29, no. 1, p. 27.

    Article  CAS  PubMed  Google Scholar 

  105. Tenovuo, J., Antimicrobial agents in saliva—protection for the whole body, J. Dent. Res., 2002, vol. 81, no. 12, p. 807.

    Article  PubMed  Google Scholar 

  106. Allgrove, J.E., Gomes, E., Hough, J., and Gleeson, M., Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men, J. Sports Sci., 2008, vol. 26, no. 6, p. 653.

    Article  PubMed  Google Scholar 

  107. Crucian, B.E., Zwart, S.R., Mehta, S.K., et al., Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight, J. Interferon Cytokine Res., 2014, vol. 34, no. 10, p. 778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Morukov, B.V., Rykova, M.P., Antropova, E.N., et al., T-cell immunity and cytokine production in cosmonauts after long-duration space flights, Acta Astronaut., 2011, vol. 68, nos. 7—8, p. 739.

    Article  CAS  Google Scholar 

  109. Rykova, M.P., Gertsik, Y.G., Antropova, E.N., and Buravkova, L.B., Serum levels of immunoglobulins, allergen-specific IgE antibodies, and interleukin-4 in cosmonaunts before and after short flights on the International Space Station, Hum. Physiol., 2006, vol. 32, no. 4, p. 457. https://doi.org/10.1134/S0362119706040128

    Article  CAS  Google Scholar 

  110. Ponomarev, S.A., Sadova, A.A., Rykova, M.P., et al., The impact of short-term confinement on human innate immunity, Sci. Rep., 2022, vol. 12, no. 1, p. 8372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mehta, S.K., Crucian, B.E., Stowe, R.P., et al., Reactivation of latent viruses is associated with increased plasma cytokines in astronauts, Cytokine, 2013, vol. 61, no. 1, p. 205.

    Article  CAS  PubMed  Google Scholar 

  112. Crucian, B.E., Stowe, R.P., Pierson, D.L., and Sams, C.F., Immune system dysregulation following short- vs long-duration spaceflight, Aviat. Space Environ. Med., 2008, vol. 72, no. 9, p. 835.

    Article  Google Scholar 

  113. Crucian, B., Stowe, R.P., Mehta, S., et al., Alterations in adaptive immunity persist during long-duration spaceflight, NPJ Microgravity, 2015, vol. 1, p. 15013.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kaur, I., Simons, E.R., Castro, V.A., et al., Changes in monocyte functions of astronauts, Brain Behav. Immun., 2005, vol. 19, no. 6, p. 547.

    Article  CAS  PubMed  Google Scholar 

  115. Stowe, R.P., Sams, C.F., Mehta, S.K., et al., Leukocyte subsets and neutrophil function after short-term spaceflight, J. Leukoc. Biol., 1999, p. 179.

  116. Bigley, A.B., Agha, N.H., Baker, F.L., et al., NK cell function is impaired during long-duration spaceflight, J. Appl. Physiol., 2019, vol. 126, no. 4, p. 842.

    Article  CAS  PubMed  Google Scholar 

  117. Konstantinova, I.V., Rykova, M.P., Lesnyak, A.T., and Antropova, E.A., Immune changes during long-duration missions, J. Leukocyte Biol., 1993, vol. 54, no. 3, p. 189.

    Article  CAS  PubMed  Google Scholar 

  118. Konstantinova, I.V., Rykova, M.P., Meshkov, D., et al., Natural killer cells after ALTAIR mission, Acta Astronaut., 1995, vol. 36, nos. 8–12, p. 713.

    Article  CAS  PubMed  Google Scholar 

  119. Meshkov, D. and Rykova, M., The natural cytotoxicity in cosmonauts on board space stations, Acta Astronaut., 1995, vol. 36, nos. 8–12, p. 719.

    Article  CAS  PubMed  Google Scholar 

  120. Barcellos-Hoff, M.H., Park, C., and Wright, E.G., Radiation and the microenvironment—tumorigenesis and therapy, Nat. Rev. Cancer, 2005, vol. 5, no. 11, p. 867.

    Article  CAS  PubMed  Google Scholar 

  121. Morukov, B.V., Rykova, M.P., Antropova, E.N., et al., Parameters of the innate and adaptive immunity in cosmonauts after long-term space flight on board the international space station, Hum. Physiol., 2010, vol. 36, no. 3, p. 264. https://doi.org/10.1134/S0362119710030035

    Article  CAS  Google Scholar 

  122. Buravkova, L.B., Rykova, M.P., Grigorieva, V., and Antropova, E.N., Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro, J. Gravit. Physiol., 2004, vol. 11, no. 2, p. 177.

    Google Scholar 

  123. Crucian, B., Stowe, R., Mehta, S., et al., Immune system dysregulation occurs during short duration spaceflight on board the space shuttle, J. Clin. Immunol., 2013, vol. 33, no. 2, p. 456.

    Article  CAS  PubMed  Google Scholar 

  124. Konstantinova, I.V., Immune resistance of man in space flights, Acta Astronaut., 1991, vol. 23, p. 123.

    Article  CAS  PubMed  Google Scholar 

  125. Gornostaeva, A.N., Ratushnyi, A.Y., and Buravkova, L.B., Susceptibility of healthy volunteers’ adaptive immune cells to MSC-mediated immunomodulation in long-term “dry” immersion experiment, Hum. Physiol., 2022, vol. 48, no. 2, p. 152. https://doi.org/10.1134/S0362119722020086

    Article  Google Scholar 

  126. Ponomarev, S.A., Berendeeva, T.A., Kalinin, S.A., and Muranova, A.V., State of the system of signalling pattern recognition receptors of monocytes and granulocytes in cosmonauts’ peripheral blood before and after long-duration mission to the International Space Station, Aviakosm. Ekol. Med., 2016, vol. 50, no. 5, p. 18.

    CAS  Google Scholar 

  127. Vlasova, D.D., Sadova, A.A., Galina, V.S., et al., Effect of 21-day dry immersion on expression of innate immunity genes associated with the toll-like receptors’ signalling pathways, Aviakosm. Ekol. Med., 2022, vol. 56, no. 2, p. 11.

    Google Scholar 

  128. Ponomarev, S.A., Rykova, M.P., Antropova, E.N., et al., Human innate immunity under the conditions of five-day dry immersion, Aviakosm. Ekol. Med., 2011, vol. 45, no. 3, p. 17.

    CAS  Google Scholar 

  129. Ponomarev, S.A., Kutko, O.V., Rykova, M.P., et al., Changes in the cellular component of the human innate immunity system in short-term isolation, Acta Astronaut., 2020, vol. 166, p. 89.

    Article  Google Scholar 

  130. Kunz, H.E., Makedonas, G., Mehta, S.K., et al., Zoster patients on earth and astronauts in space share similar immunologic profiles, Life Sci. Space Res., 2020, vol. 25, p. 119.

    Article  Google Scholar 

  131. Pierson, D.L., Stowe, R.P., Phillips, T.M., et al., Epstein—Barr virus shedding by astronauts during space flight, Brain Behav. Immun., 2005, vol. 19, no. 3, p. 235.

    Article  CAS  PubMed  Google Scholar 

  132. Prusty, B.K., Siegl, C., Hauck, P., et al., Chlamydia trachomatis infection induces replication of latent HHV-6, PLoS One, 2013, vol. 8, no. 4, p. e61400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Deka, S., Vanover, J., Dessus-Babus, S., et al., Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells, Cell. Microbiol., 2006, vol. 8, no. 1, p. 149.

    Article  CAS  PubMed  Google Scholar 

  134. Prusty, B.K., Bohme, L., Bergmann, B., et al., Imbalanced oxidative stress causes chlamydial persistence during non-productive human herpes virus co-infection, PLoS One, 2012, vol. 7, no. 10, p. e47427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vanover, J., Sun, J., Deka, S., et al., Herpes simplex virus co-infection-induced Chlamydia trachomatis persistence is not mediated by any known persistence inducer or anti-chlamydial pathway, Microbiology, 2008, vol. 154, part 3, p. 971.

    Article  CAS  PubMed  Google Scholar 

  136. Brinley, A.A., Theriot, C.A., Nelman-Gonzalez, M., et al., Characterization of Epstein—Barr virus reactivation in a modeled spaceflight system, J. Cell. Biochem., 2013, vol. 114, no. 3, p. 616.

    Article  CAS  PubMed  Google Scholar 

  137. Long, J.P., Pierson, S., and Hughes, J.H., Suppression of Epstein—Barr virus reactivation in lymphoblastoid cells cultured in simulated microgravity, In Vitro Cell. Dev. Biol., 1999, vol. 35, no. 1, p. 49.

    Article  CAS  Google Scholar 

  138. Wang, J., Nagy, N., and Masucci, M.G., The Epstein—Barr virus nuclear antigen-1 upregulates the cellular antioxidant defense to enable B-cell growth transformation and immortalization, Oncogene, 2020, vol. 39, no. 3, p. 603.

    Article  PubMed  Google Scholar 

  139. Ilscus, L.S., Johnston, S.L., Moynihan, S., et al., Rashes and exanthems on long duration space flights, 80th Annual Scientific Meeting of the Aerospace Medical Association, Los Angeles, CA, 2009, p. 80.

  140. Wooley, B.C. and McCollum, G.W., Flight crew health stabilization program, Biomedical Results of Apollo, Jones W.L., Ed., Houston (TX): BioTechnology NASA, 1975, p. 141.

    Google Scholar 

  141. Feuerecker, M., Crucian, B., Salam, A.P., et al., Early adaption to the Antarctic environment at dome C: consequences on stress sensitive innate immune functions, High Alt. Med. Biol., 2014, vol. 15, no. 3, p. 341.

    Article  CAS  PubMed  Google Scholar 

  142. Shirai, T., Magara, K.K., Motohashi, S., et al., TH1- biased immunity induced by exposure to Antarctic winter, J. Allergy Clin. Immunol., 2003, vol. 111, no. 6, p. 1353.

    Article  CAS  PubMed  Google Scholar 

  143. Strewe, C., Moser, D., Buchheim, J.-I., et al., Sex differences in stress and immune responses during confinement in Antarctica, Biol. Sex Differ., 2019, vol. 10, no. 1, p. 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Williams, D.L., Climie, A., Muller, H.K., and Lugg, D.J., Cell-mediated immunity in healthy adults in Antarctica and the sub-Antarctic, J. Clin. Lab. Immunol., 1986, vol. 20, no. 1, p. 43.

    CAS  PubMed  Google Scholar 

  145. Tingate, T.R., Lugg, D.J., Muller, H.K., et al., Antarctic isolation: immune and viral studies, Immunol. Cell Biol., 1997, vol. 75, no. 3, p. 275.

    Article  CAS  PubMed  Google Scholar 

  146. Mehta, S.K., Pierson, D.L., Cooley, H., et al., Epstein—Barr virus reactivation associated with diminished cell-mediated immunity in Antarctic expeditioners, J. Med. Virol., 2000, vol. 61, no. 2, p. 235.

    Article  CAS  PubMed  Google Scholar 

  147. Reyes, D.P., Brinley, A.A., Blue, R.S., et al., Clinical herpes zoster in Antarctica as a model for spaceflight, Aerosp. Med. Hum. Perform., 2017, vol. 88, no. 8, p. 784.

    Article  PubMed  Google Scholar 

  148. Yu, Y.Z., Wang, Z.H., Zhang, W., and Wu, W., Effect of the environment in Antarctica on immune function and electroencephalogram, Chin. J. Polar Res., 1994, vol. 5, no. 2, p. 45.

    Google Scholar 

Download references

Funding

The article was made within the basic topics of the Institute of Biomedical Problems, Russian Academy of Sciences (Moscow) 65.1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. Shulgina or S. A. Ponomarev.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shulgina, S.M., Rykova, M.P., Kutko, O.V. et al. Immunological Aspects of Reactivation of Latent Infections in Space Flight and Antarctica. Hum Physiol 49, 682–698 (2023). https://doi.org/10.1134/S0362119723700482

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119723700482

Keywords:

Navigation