Skip to main content
Log in

The Concept of Allostasis and Autonomic Regulation in Space Flight

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review presents literature sources confirming the key aspects of the theory of allostasis and its relationship with the theory of homeostasis, as well as some neurophysiological aspects of allostatic systems, which include autonomic regulation, which determine the relationship between the brain and the cardiovascular system. One of the aspects of allostatic regulation is heart rate variability, which reflects the state of the body’s plastic constants and their changes under space flight conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We assign this role to the cardiovascular system in view of the fact that it is a determining link in a number of so-called integrative functions of the body: physical performance, orthostatic and vestibulo-vegetative stability, thermoregulation, etc.

  2. In cybernetics and management theory, setting (set point) is the target value for the essential system variable. The deviation of such a variable from the set value is the basis for error control regulation using a negative feedback.

REFERENCES

  1. Cannon, W.B., Organization for physiological homeostasis, Physiol. Rev., 1929, vol. 9, no. 3, p. 399.

    Article  Google Scholar 

  2. Asarian, L., Gloy, V., and Geary, N., Homeostasis, in Encyclopedia of Human Behavior, Academic, 2012, p. 324.

    Google Scholar 

  3. Cannon, W.B., The Wisdom of the Body, New York: W.W. Norton, 1932.

    Book  Google Scholar 

  4. Goldstein, D.S., How does homeostasis happen? Integrative physiological, systems biological, and evolutionary perspectives, Am. J. Physiol.: Regul. Integr. Comp. Physiol., 2019, vol. 316, no. 4, p. R301.

    CAS  PubMed  Google Scholar 

  5. Fisher, S. and Reason, J., Allostasis: a new paradigm to explain arousal pathology, Handbook of Life Stress, Cognition and Health, Fisher, S. and Reason, J., Eds., New York: Wiley, 1988, P. 629.

    Google Scholar 

  6. Sterling, P., Allostasis: a model of predictive regulation, Physiol. Behav., vol. 106, no. 1. P. 5.

  7. Nosovsky, A.M., Larina, I.M., and Grigor’ev, A.I., Application of the principle of invariant relations for the development of quantitative assessment of homeostasis of human organism, Tekhnol. Zhivykh Sist., 2009, vol. 6, no. 5, p. 33.

    Google Scholar 

  8. Carlson, E.D. and Chamberlain, R.M., Allostatic load and health disparities: a theoretical orientation, Res. Nurs. Health, 2005, vol. 28, no. 4, p. 306.

    Article  CAS  PubMed  Google Scholar 

  9. McEwen, B.S. and Wingfiel, J.C., The concept of allostasis in biology and biomedicine, Horm. Behav., 2003, vol. 43, no. 1, p. 2.

    Article  PubMed  Google Scholar 

  10. Goldberge, A.L., Peng, C.K., and Lipsitz, L.A., What is physiologic complexity and how does it change with aging and disease? Neurobiol. Aging, 2002, vol. 23, no. 1, p. 23.

    Article  Google Scholar 

  11. Plsek, P., Redesigning healthcare with insights from the science of complex adaptive systems, in Crossing the Quality Chasm: a New Health System for the 21st Century, Washington, D.C.: National Academy Press, 2001, p. 309.

    Google Scholar 

  12. McEwen, B.S., Interacting mediators of allostasis and allostatic load: towards an understanding of resilience in aging, Metabolism, 2003, vol. 52, no. 10, suppl. 2, p. 10.

    Article  CAS  PubMed  Google Scholar 

  13. Damasio, A., Descartes’ Error: Emotion, Reason, and the Human Brain, New York: Putnam, 2005.

    Google Scholar 

  14. Jänig, W., The integrative action of the autonomic nervous system, Neurobiology of Homeostasis, New York: Cambridge University Press, 2006, p. 610.

    Book  Google Scholar 

  15. Thayer, J.F., Ahs, F., Fredrickson, M., et al., A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health, Neurosci. Biobehav. Rev., 2012, vol. 36, no. 2, p. 747.

    Article  PubMed  Google Scholar 

  16. Thayer, J.F. and Sternberg, E., Beyond heart rate variability: vagal regulation of allostatic systems, Ann. N.Y. Acad. Sci., 2006, vol. 1088, p. 361.

    Article  CAS  PubMed  Google Scholar 

  17. Viljoen, M. and Claassen, N., Allostatic load and heart rate variability as health risk indicators, Afr. Health Sci., 2017, vol. 17, no. 2, p. 428.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Corrigan, S.L., Roberts, S., Warmington, S., et al., Monitoring stress and allostatic load in first responders and tactical operators using heart rate variability: a systematic review, BMC Public Health, 2021, vol. 21, no. 1, p. 1701.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jose, A.D. and Collison, D., The normal range and determinants of the intrinsic heart rate in man, Cardiovasc. Res., 1970, vol. 4, no. 2, p. 160.

    Article  CAS  PubMed  Google Scholar 

  20. Pokrovskii, V.M., Formirovanie ritma serdtsa v organizme cheloveka i zhivotnykh (Formation of Heart Rhythm in the Humans and Animals), Krasnodar: Kuban’-Kniga, 2007.

  21. Berntson, G.G., Bigger, J.T., Jr., Eckberg, D.L., et al., Heart rate variability: origins, methods, and interpretive caveats, Psychophysiology,1997, vol. 34, no. 6, p. 623.

    Article  CAS  PubMed  Google Scholar 

  22. Benarroch, E.E., The central autonomic network: functional organization, dysfunction, and perspective, Mayo Clin. Proc., 1993, vol. 68, no. 10, p. 988.

    Article  CAS  PubMed  Google Scholar 

  23. Smit, R., Thayer, J.F., Khals, S.S., and Lane, R.D., The hierarchical basis of neurovisceral integration, Neurosci. Biobehav. Rev., 2017, vol. 75, p. 274.

    Article  Google Scholar 

  24. Sklerov, M., Dayan, E., and Browne, N., Functional neuroimaging of the central autonomic network: recent developments and clinical implications, Clin. Auton. Res., 2019, vol. 29, no. 6, p. 555.

    Article  PubMed  Google Scholar 

  25. Shouman, K. and Benarroch, E.E., Central autonomic network, in Autonomic Nervous System and Sleep, Springer-Verlag, 2021, p. 9.

    Google Scholar 

  26. Saper, C.B., The central autonomic nervous system: conscious visceral perception and autonomic pattern generation, Annu. Rev. Neurosci., 2002, vol. 25, p. 433.

    Article  CAS  PubMed  Google Scholar 

  27. Thayer, J.F., Sollers, J.J., Labiner, D.M., et al., Age-related differences in prefrontal control of heart rate in humans: a pharmacological blockade study, Int. J. Psychophysiol., 2009, vol. 72, no. 1, p. 81.

    Article  PubMed  Google Scholar 

  28. Palma, J.A. and Benarroch, E.E., Neural control of the heart: recent concepts and clinical correlations, Neurology, 2014, vol. 83, no. 3, p. 261.

    Article  PubMed  Google Scholar 

  29. McEwen, B.S., Nasca, C., and Gray, J.D., Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex, Neuropsychopharmacology, 2016, vol. 41, no. 1, p. 3.

    Article  CAS  PubMed  Google Scholar 

  30. Joëls, M. and Baram, T.Z., The neuro-symphony of stress, Nat. Rev. Neurosci., 2009, vol. 10, no. 6, p. 459.

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Kloet, E.R., Joëls, M., and Holsboer, F., Stress and the brain: from adaptation to disease, Nat. Rev. Neurosci., 2005, vol. 6, no. 6, p. 463.

    Article  CAS  PubMed  Google Scholar 

  32. Karlamangla, A.S., Singer, B.H., McEwen, B.S., et al., Allostatic load as a predictor of functional decline: MacArthur studies of successful aging, J. Clin. Epidemiol., 2002, vol. 55, no. 7, p. 696.

    Article  PubMed  Google Scholar 

  33. McEwen, B.S., Sex, stress and the hippocampus: allostasis, allostatic load and the aging process, Neurobiol. Aging, 2002, vol. 23, no. 5, p. 921.

    Article  CAS  PubMed  Google Scholar 

  34. Arminjon, M., Birth of the allostatic model: from Cannon’s biocracy to critical physiology, J. Hist. Biol., 2016, vol. 49, no. 2, p. 397.

    Article  PubMed  Google Scholar 

  35. Vinogradova, O.L., Tomilovskaya, E.S., and Kozlovskaya, I.B., Gravity factor as the basis for the evolutionary adaptation of animal organisms to terrestrial conditions, Aviakosm. Ekol. Med., 2020, vol. 54, no. 6, p. 5.

    Google Scholar 

  36. Gauer, O.H. and Thorn, H.L., Postural changes in the circulation, in Handbook of Physiology, sec. 2: Circulation, Baltimore: Williams and Wilkins, 1965, vol. 3, p. 2409.

  37. Osadchii, L.I., Polozhenie tela i regulyatsiya krovoobrashcheniya (Body Position and Regulation of Blood Circulation), Leningrad: Nauka, 1982.

  38. Gazenko, O.G., Grigor’ev, A.I., and Egorov, A.D., Medical research under the program of long-term manned flights on the Salyut-7 orbital complex Soyuz-T, Kosm. Biol. Aviakosm. Med., 1990, vol. 24, no. 2, p. 9.

    PubMed  Google Scholar 

  39. Buravkova, L., Larina, I., Andreeva, E., and Grigoriev, A., Microgravity effects on the matrisome, Cells, 2021, vol. 10, no. 9, p. 2226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iatridis, J.C., MacLean, J.J., Roughley, P.J., and Alini, M., Effects of mechanical loading on intervertebral disc metabolism in vivo, J. Bone Joint Surg. Am., 2006, vol. 88, no. 2, p. 41.

    PubMed  Google Scholar 

  41. Swaminathan, V. and Gloerich, M., Decoding mechanical cues by molecular mechanotransduction, Curr. Opin. Cell Biol., 2021, vol. 72, p. 72.

    Article  CAS  PubMed  Google Scholar 

  42. Mrkonjic, S., Destaing, O., and Albiges-Rizo, C., Mechanotransduction pulls the strings of matrix degradation at invadosome, Matrix Biol., 2017. vols. 57—58, p. 190.

    Article  PubMed  Google Scholar 

  43. Yamashiro, Y. and Yanagisawa, H., The molecular mechanism of mechanotransduction in vascular homeostasis and disease, Clin. Sci. (London), 2020, vol. 134, no. 17, p. 2399.

    Article  CAS  Google Scholar 

  44. Ando, J. and Yamamoto, K., Hemodynamic forces, endothelial mechanotransduction, and vascular diseases, Magn. Reson. Med. Sci., 2022, vol. 21, no. 2, p. 258.

    Article  CAS  PubMed  Google Scholar 

  45. Davis, M.J., Earley, S., Li, Y.S., and Chien, S., Vascular mechanotransduction, Physiol. Rev., 2023, vol. 103, no. 2, p. 1247.

    Article  CAS  PubMed  Google Scholar 

  46. Gazenko, O.G., Grigor’ev, A.I., and Natochin, Yu.V., Water—salt homeostasis and weightlessness, Kosm. Biol. Aviakosm. Med., 1980, vol. 14, no. 5, p. 3.

    CAS  PubMed  Google Scholar 

  47. Grigor’ev, A.I., Larina, I.M., and Noskov, V.B., The influence of space flights on water-electrolytes turnover and its regulation, Ross. Fiziol. Zh. im. I.M. Sechenova, 2006, vol. 92, no. 1, p. 5.

    PubMed  Google Scholar 

  48. Noskov, V.B., The state of water-salt metabolism, in Orbital’naya stantsiya “Mir” (Mir Orbital Station), Moscow: Inst. Med.-Biol. Probl., 2001, vol. 1, p. 599.

  49. Noskov, V.B., Redistribution of liquid media of the body under conditions of weightlessness and simulating it impacts, Aviakosm. Ekol. Med., 2011, vol. 45, no. 1, p. 17.

    CAS  Google Scholar 

  50. Noskov, V.B., Adaptation of the water-electrolyte metabolism to space flight and at its imitation, Hum. Physiol., 2013, vol. 39, no. 5, p. 551. https://doi.org/10.1134/S0362119713050113

    Article  CAS  Google Scholar 

  51. Hargens, A.R. and Richardson, S., Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight, Respir. Physiol. Neurobiol., 2009, vol. 169, no. 1, p. 30.

    Article  Google Scholar 

  52. Hughson, R.L., Helm, A., and Durante, M., Heart in space: effect of the extraterrestrial environment on the cardiovascular system, Nat. Rev. Cardiol., 2018, vol. 15, no. 3, p. 167.

    Article  PubMed  Google Scholar 

  53. Petersen, L.G., Damgaard, M., Petersen, J.C., and Norsk, P., Mechanisms of increase in cardiac output during acute weightlessness in humans, J. Appl. Physiol., 2011, vol. 111, no. 2, p. 407.

    Article  PubMed  Google Scholar 

  54. Tank, J. and Jordan, J., Mighty hearts in space, J. Physiol., 2015, vol. 593, no. 3, p. 485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aubert, A.E., Larina, I., Momken, I., et al., Towards human exploration of space: the THESEUS review series on cardiovascular, respiratory, and renal research priorities, NPJ Microgravity, 2016, vol. 2, p. 16031.

  56. Baranov, V.M. and Donina, Zh.A., Modeling the relationships between respiratory biomechanics and hemodynamics in normal gravity and weightlessness, Ul’yanovsk. Med.-Biol. Zh., 2015, no. 1, p. 144.

  57. Buckey, J.C., Gaffney, F.A., Lane, L.D., et al., Central venous pressure in space, N. Engl. J. Med., 1993, vol. 328, no. 2, p. 1853.

    Article  CAS  PubMed  Google Scholar 

  58. Norsk, P., Adaptation of the cardiovascular system to weightlessness: surprises, paradoxes and implications for deep space missions, Acta Physiol., 2020, vol. 228, no. 3, p. e13434.

    Article  CAS  Google Scholar 

  59. Estenne, M., Gorini, M., Van Muylem, A., et al., Rib cage shape and motion in microgravity, J. Appl. Physiol., 1992, vol. 73, no. 3, p. 946.

    Article  CAS  PubMed  Google Scholar 

  60. Buckey, J.C., Gaffney, F.A., Lane, L.D., et al., Central venous pressure in space, J. Appl. Physiol., 1996, vol. 81, no. 1, p. 19.

    Article  PubMed  Google Scholar 

  61. Hughson, R.L., Recent findings in cardiovascular physiology with space travel, Respir. Physiol. Neurobiol., 2009, vol. 169, suppl. 1, p. 38.

    Article  Google Scholar 

  62. Hughson, R.L., Helm, A., and Durante, M., Heart in space: effect of the extraterrestrial environment on the cardiovascular system, Nat. Rev. Cardiol., 2018, vol. 15, no. 3, p. 167.

    Article  PubMed  Google Scholar 

  63. Grigor’ev, A.I. and Egorov, A.D., Theory and practice of medical control during long-term space flights, Aviakosm. Ekol. Med., 1997, vol. 31, no. 1, p. 14.

    Google Scholar 

  64. Grigor’ev, A.I. and Baevskii, R.M., Kontseptsiya zdorov’ya i problema normy v kosmicheskoi meditsine (The Concept of Health and the Problem of Norms in Space Medicine), Moscow: Slovo, 2001.

  65. Grigor’ev, A.I. and Baevskii, R.M., Kontseptsiya zdorov’ya i kosmicheskaya meditsina (Concept of Health and Space Medicine), Moscow: Slovo, 2007.

  66. Crucian, B., Stowe, R.P., Mehta, S., et al., Alterations in adaptive immunity persist during long-duration spaceflight, NPJ Microgravity, 2015, vol. 1, p. 15013.

  67. Van Ombergen, A., Laureys, S., Sunaert, S., et al., Spaceflight-induced neuroplasticity in humans as measured by MRI: what do we know so far? NPJ Microgravity, 2017, vol. 3, p. 2.

  68. Roberts, D.R., Albrecht, M.H., Collins, H.R., et al., Effects of spaceflight on astronaut brain structure as indicated on MRI, N. Engl. J. Med., 2017, vol. 377, no. 18, p. 1746.

    Article  PubMed  Google Scholar 

  69. Fomina, E.V., Lysova, N.Y., Kukoba, T.B., et al., One-year mission on ISS is a step towards interplanetary missions, Aerosp. Med. Hum. Perform., 2017, vol. 88, no. 12, p. 1094.

    Article  PubMed  Google Scholar 

  70. Grigor’ev, A.I. and Egorov, A.D., Regulation of the human cardiovascular system under microgravitation, Vestn. Ross. Akad. Med. Nauk, 2002, no. 6, p. 52.

  71. Gundel, A., Drescher, J., Spatenko, Y.A., and Polyakov, V.V., Changes in basal heart rate in spaceflights up to 438 days, Aviat. Space Environ. Med., 2002, vol. 73, no. 1, p. 17.

    PubMed  Google Scholar 

  72. Vandeput, S., Widjaja, D., Aubert, A.E., and van Huffel, S., Adaptation of autonomic heart rate regulation in astronauts after spaceflight, Med. Sci. Monit., 2013, vol. 19, p. 9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Parin, V.V., Baevskii, R.M., Volkov, Yu.N., and Gazenko, O.G., Kosmicheskaya kardiologiya (Space Cardiology), Leningrad: Meditsina, 1967.

  74. Baevsky, R.M., Funtova, I.I., Luchitskaya, E.S., and Chernikova, A.G., The effects of long-term microgravity on autonomic regulation of blood circulation in crewmembers of the International Space Station, Cardiometry, 2014, no. 5, p. 35.

  75. Baevskii, R.M., Current problems of space cardiology, Aviakosm. Ekol. Med., 2008, vol. 42, no. 6, p. 19.

    CAS  Google Scholar 

  76. Baevsky, R.M. and Nikulina, G.A., Holter monitoring in space medicine: analysis of heart rate variability, Vestn. Aritmol., 2000, no. 16, p. 6.

  77. Baevskii, R.M., Analysis of heart rate variability in space medicine, Hum. Physiol., 2002, vol. 28, no. 2, p. 202.

    Article  Google Scholar 

  78. Baevskii, R.M., The problem of assessing and predicting the functional state of the body and its development in space medicine, Usp. Fiziol. Nauk, 2006, vol. 37, no. 3, p. 42.

    CAS  PubMed  Google Scholar 

  79. Baevskii, R.M., Funtova, I.I., Gharib, C., and Fortrat, J.-O., A comprehensive study of the autonomic regulation of blood pressure and heart rate in humans during prolonged exposure to weightlessness, in Orbital’naya stantsiya “Mir”: mediko-biologicheskie eksperimenty (Mir Orbital Station: Medical and Biological Experiments), Moscow: Inst. Med.-Biol. Probl., 2001, vol. 2, p. 541.

  80. Baevskii, R.M., Polyakov, V.V., Moser, M., et al., Adaptation of the blood circulatory system to conditions of long-term weightlessness: ballistocardiographic studies during a 14-month space flight, Aviakosm. Ekol. Med., 1998, vol. 32, no. 3, p. 23.

    CAS  Google Scholar 

  81. Baevsky, R.M., Moser, M., Nikulina, G.A., et al., Autonomic regulation of circulation and cardiac contractility during a 14-month space flight, Acta Astronaut., 1998, vol. 42, nos. 1—8, p. 159.

  82. Baevsky, R.M., Baranov, V.M., Funtova, I.I., et al., Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station, J. Appl. Physiol., 2007, vol. 103, no. 1, p. 156.

    Article  PubMed  Google Scholar 

  83. Baevsky, R.M., Funtova, I.I., Diedrich, A. et al., Autonomic function testing aboard the ISS using “Pneumocard”, Acta Astronaut., 2009, vol. 65, p. 930.

    Article  Google Scholar 

  84. Baevskii, R.M., Luchitskaya, E.S., Funtova, I.I., and Chernikova, A.G., Study of the autonomic regulation of blood circulation during a long-term space flight, Hum. Physiol., 2013, vol. 39, no. 5, p. 486. https://doi.org/10.1134/S0362119713050046

    Article  Google Scholar 

  85. Otsuka, K., Cornelissen, G., Kubo, Y., et al., Anti-aging effects of long-term space missions, estimated by heart rate variability, Sci. Rep., 2019, vol. 9, no. 1, p. 8995.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Otsuka, K., Cornelissen, G., Furukawa, S., et al., Astronauts well-being and possibly anti-aging improved during long-duration spaceflight, Sci. Rep., 2021, vol. 11, no. 1, p. 14907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, G. and He, H., Hormesis, allostatic buffering capacity and physiological mechanism of physical activity: a new theoretic framework, Med. Hypotheses, 2009, vol. 72, no. 5, p. 527.

    Article  PubMed  Google Scholar 

  88. McEwen, B., Stress, definition and concepts, Encyclopedia of Stress, Fink, G., Ed., San Diego, CA: Academic, 2000, vol. 3. p, 508.

  89. Sy, M.R., Keefe, J.A., Sutton, J.P., and Wehrens, X.H.T., Cardiac function, structural, and electrical remodeling by microgravity exposure, Am. J. Physiol.: Heart Circ. Physiol., 2023, vol. 324, no. 1, p. H1.

    CAS  PubMed  Google Scholar 

  90. Doroshin, A., Jillings, S., Jeurissen, B., et al., Brain connectometry changes in space travelers after long-duration spaceflight, Front. Neural Circuits, 2022, vol. 16, p. 815838.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zu Eulenburg, P., Buchheim, J., Ashton, N.J., et al., Changes in blood biomarkers of brain injury and degeneration following long-duration spaceflight, JAMA Neurol., 2021, vol. 78, no. 12, p. 1525.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Garrett-Bakelman, F.E., Darshi, M., Green, S.J., et al., The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight, Science, 2019, vol. 364, no. 6436, p. eaau8650.

  93. Tzanetakou, I.P., Katsilambros, N.L., Benetos, A., et al., “Is obesity linked to aging?”: adipose tissue and the role of telomeres, Ageing Res. Rev., 2012, vol. 11, no. 2, p. 220.

    Article  PubMed  Google Scholar 

  94. Otsuka, K., Cornelissen, G., Furukawa, S., et al., Unconscious mind activates central cardiovascular network and promotes adaptation to microgravity possibly anti-aging during 1-year-long spaceflight, Sci. Rep., 2022, vol. 12, no. 1, p. 11862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Egorov, A.D., Qualification of human body reactions developing in microgravity conditions, Aviakosm. Ekol. Med., 1996, vol. 30, no. 4, p. 14.

    CAS  Google Scholar 

  96. Grigor'ev, A.I. and Egorov, A.D., Mechanisms of homeostasis during prolonged exposure to microgravity, Aviakosm. Ekol. Med., 1998, vol. 32, no. 6, p. 20.

    CAS  Google Scholar 

  97. Baevskii, R.M., Matematicheskii analiz izmenenii serdechnogo ritma pri stresse (Mathematical Analysis of Changes in Heart Rate under Stress), Moscow: Nauka, 1984.

  98. Larina, I.M., Nosovsky, A.M., and Rusanov, V.B., Holism and reductionism in physiology, Hum. Physiol., 2022, vol. 48, no. 3, p. 346. https://doi.org/10.1134/S036211972201008X

    Article  Google Scholar 

  99. Acevedo, A. and Androulakis, I.P., Allostatic breakdown of cascading homeostat systems: a computational approach, Heliyon, 2017, vol. 3, no. 7, p. e00355.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The review was prepared within Russian Academy of Sciences topics 64.1 and 65.3 for 2013–2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Rusanov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusanov, V.B., Larina, I.M. & Nosovsky, A.M. The Concept of Allostasis and Autonomic Regulation in Space Flight. Hum Physiol 49, 699–708 (2023). https://doi.org/10.1134/S0362119723700470

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119723700470

Keywords:

Navigation