Skip to main content
Log in

Risk of Thrombosis and Mechanisms of Activation of Hemostasis in Divers after Diving

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The risks of decompression sickness and its complications in professional divers and amateur divers with various methods of diving in real and simulated conditions are considered. The pathogenesis of disorders of the plasma and vascular hemostasis system under the influence of environmental factors on the body during various types of dives is discussed. Generalization of the research results showed that the mechanisms of activation of thrombosis under this influence are complex and are caused by microbubble-mediated platelet activation as well as by development of endothelial dysfunction, oxidative, and psychophysiological stress. The study of hemostasis parameters in professional and amateur divers can be one of the main methods of assessing the risk of its development. The considered means of preventing thrombosis during diving and decompression, according to the results of the studies included in the review, are quite effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Levett, D.Z. and Millar, I.L., Bubble trouble: a review of diving physiology and disease, Postgrad. Med. J., 2008, vol. 84, no. 997, p. 571.

    Article  CAS  PubMed  Google Scholar 

  2. Spira, A., Diving and marine medicine review part II: diving diseases, J. Travel Med., 1999, vol. 6, no. 3, p. 180.

    Article  CAS  PubMed  Google Scholar 

  3. Beale, P., Kitchen, L., Graf, W.R., and Fenton, M.E., Abdominal decompression illness following repetitive diving: a case report and review of the literature, Undersea Hyperbaric Med., 2019, vol. 46, no. 2, p. 211.

    Article  Google Scholar 

  4. Vann, R.D., Butler, F.K., Mitchell, S.J., and Mo-on, R.E., Decompression illness, Lancet, 2011, vol. 377, no. 9760, p. 153.

    Article  PubMed  Google Scholar 

  5. Pollock, N.W. and Buteau, D., Updates in decompression illness, Emerg. Med. Clin. North Am., 2017, vol. 35, no. 2, p. 301.

    Article  PubMed  Google Scholar 

  6. Kohshi, K., Denoble, P.J., Tamaki, H., et al., Decompression illness in repetitive breath-hold diving: why ischemic lesions involve the brain? Front. Physiol., 2021, vol. 12, p. 711850.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kohshi, K., Tamaki, H., Lemaître, F., et al., Diving-related disorders in commercial breath-hold divers (Ama) of Japan, Diving Hyperbaric Med., 2021, vol. 51, no. 2, p. 199.

    Article  Google Scholar 

  8. Vann, R.D., Denoble, P.J., Howle, L.E., et al., Resolution and severity in decompression illness, Aviat. Space Environ. Med., 2009, vol. 80, no. 5, p. 466.

    Article  PubMed  Google Scholar 

  9. Alcock, J. and Brainard, A.H., Gene-environment mismatch in decompression sickness and air embolism, Med. Hypotheses, 2010, vol. 75, no. 2, p. 199.

    Article  PubMed  Google Scholar 

  10. Beuster, W. and van Laak, U., Severe decompression sickness in divers, Wien. Med. Wochenschr., 1999, vol. 151, nos. 5−6, p. 111.

    CAS  PubMed  Google Scholar 

  11. Eichhorn, L. and Leyk, D., Diving medicine in clinical practice, Dtsch. Ärzteblatt Int., 2015, vol. 112, no. 9, p. 147.

    Google Scholar 

  12. Leffler, C.T., Effect of ambient temperature on the risk of decompression sickness in surface decompression divers, Aviat. Space Environ. Med., 2001, vol. 72, no. 5, p. 477.

    CAS  PubMed  Google Scholar 

  13. Bosco, G., Yang, Z.J., Savini, F., et al., Environmental stress on diving-induced platelet activation, Undersea Hyperbaric Med., 2001, vol. 28, no. 4, p. 207.

    CAS  Google Scholar 

  14. Madden, L.A. and Laden, G., Gas bubbles may not be the underlying cause of decompression illness—the at-depth endothelial dysfunction hypothesis, Med. Hypotheses, 2009, vol. 72, no. 4, p. 389.

    Article  PubMed  Google Scholar 

  15. Lambrechts, K., Pontier, J.M., Balestra, C., et al., Effect of a single, open-sea, air scuba dive on human micro- and macrovascular function, Eur. J. Appl. Physiol., 2013, vol. 113, no. 10, p. 2637.

    Article  PubMed  Google Scholar 

  16. Toyota, S., Nagata, S., Yoshino, S., et al., Mesenteric venous thrombosis as a rare complication of decompression sickness, Surg. Case Rep., 2020, vol. 6, no. 1, p. 24.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gertler, S.L., Stein, J., Simon, T., and Miyai, K., Mesenteric venous thrombosis as sole complication of decompression sickness, Dig. Dis. Sci., 1984, vol. 29, no. 1, p. 91.

    Article  CAS  PubMed  Google Scholar 

  18. Kassar, E.V., Bass, J.R., Douglas, E., and Speake, M.R., Portal and mesenteric vein thrombosis associated with decompression sickness in a 48-year-old deep sea self-contained underwater breathing apparatus (SCUBA) diver, Am. J. Case Rep., 2022, vol. 23, p. e935473.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Boussuges, A., Succo, E., Juhan-Vague, I., and Sainty, J.M., Activation of coagulation in decompression illness, Aviat. Space Environ. Med., 1998, vol. 69, no. 2, p. 129.

    CAS  PubMed  Google Scholar 

  20. Gempp, E., Morin, J., Louge, P., and Blatteau, J.E., Reliability of plasma D-dimers for predicting severe neurological decompression sickness in scuba divers, Aviat. Space Environ. Med., 2012, vol. 83, no. 8, p. 771.

    Article  PubMed  Google Scholar 

  21. Bolboli, L., Khodadadi, D., and Azimi, F., Can diving depth affect blood hemostasis system responses? Sport Physiol., 2019, vol. 11, no. 41, p. 123.

    Google Scholar 

  22. Pontier, J.M., Jimenez, C., and Blatteau, J.E., Blood platelet count and bubble formation after a dive to 30 msw for 30 min, Aviat. Space Environ. Med., 2008, vol. 79, no. 12, p. 1096.

    Article  PubMed  Google Scholar 

  23. Lambrechts, K., Balestra, C., Theron, M., et al., Venous gas emboli are involved in post-dive macro, but not microvascular dysfunction, Eur. J. Appl. Physiol., 2017, vol. 117, no. 2, p. 335.

    Article  CAS  PubMed  Google Scholar 

  24. Pontier, J.M., Gempp, E., and Ignatescu, M., Blood platelet-derived microparticles release and bubble formation after an open-sea air dive, Appl. Physiol. Nutr. Metab., 2012, vol. 37, no. 5, p. 888.

    Article  CAS  PubMed  Google Scholar 

  25. Moon, R.E., Hyperbaric oxygen treatment for decompression sickness, Undersea Hyperbaric Med., 2014, vol. 41, no. 2, p. 151.

    CAS  Google Scholar 

  26. Barratt, D.M., Harch, P.G., and Van Meter, K., Decompression illness in divers: a review of the literature, Neurologist, 2002, vol. 8, no. 3, p. 186.

    Article  PubMed  Google Scholar 

  27. Malmgren, R., Thorsen, T., Nordvik, A., and Holmsen, H., Microbubble-induced phospholipase C activation does not correlate with platelet aggregation, Thromb. Haemostasis, 1993, vol. 69, no. 4, p. 394.

    Article  CAS  Google Scholar 

  28. Eckmann, D.M. and Armstead, S.C., Influence of endothelial glycocalyx degradation and surfactants on air embolism adhesion, Anesthesiology, 2006, vol. 105, no. 6, p. 1220.

    Article  CAS  PubMed  Google Scholar 

  29. Barak, O.F., Janjic, N., Drvis, I., et al., Vascular dysfunction following breath-hold diving, Can. J. Physiol. Pharmacol., 2020, vol. 98, no. 2, p. 124.

    Article  CAS  PubMed  Google Scholar 

  30. Eichhorn, L., Dolscheid-Pommerich, R., Erdfel-der, F., et al., Sustained apnea induces endothelial activation, Clin. Cardiol., 2017, vol. 40, no. 9, p. 704.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Leite, A.R., Borges-Canha, M., Cardoso, R., et al., Novel biomarkers for evaluation of endothelial dysfunction, Angiology, 2020, vol. 71, no. 5, p. 397.

    Article  CAS  PubMed  Google Scholar 

  32. El-Gamal, H., Parray, A.S., Mir, F.A., et al., Circulating microparticles as biomarkers of stroke: a focus on the value of endothelial- and platelet-derived microparticles, J. Cell. Physiol., 2019, vol. 234, no. 10, p. 16739.

    Article  CAS  PubMed  Google Scholar 

  33. Culic, V.C., van Craenenbroeck, E., Muzinic, N.R., et al., Effects of scuba diving on vascular repair mechanisms, Undersea Hyperbaric Med., 2014, vol. 41, no. 2, p. 97.

    Google Scholar 

  34. Olszański, R., Sićko, Z., Baj, Z., et al., Effect of saturated air and nitrox diving on selected parameters of haemostasis, Bull. Inst. Marit. Trop. Med. Gdynia, 1997, vol. 48, nos. 1—4, p. 75.

    PubMed  Google Scholar 

  35. Bao, X.-C., Shen, Q., Fang, Y.-Q., and Wu, J.-Q., Human physiological responses to a single deep helium-oxygen diving, Front. Physiol., 2021, vol. 12, p. 735986.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Durgin, B.G. and Straub, A.C., Redox control of vascular smooth muscle cell function and plasticity, Lab. Invest., 2018, vol. 98, no. 10, p. 1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Laurindo, F.R.M., Redox cellular signaling pathways in endothelial dysfunction and vascular disease, Endothelium and Cardiovascular Diseases, Da Luz, P.L., Libby, P., Chagas, A.C.P., and Laurindo, F.R.M. Eds., Cambridge, MA: Academic, 2018, chapter 10, p. 127.

    Google Scholar 

  38. Madamanchi, N.R., Vendrov, A., and Runge, M.S., Oxidative stress and vascular disease, Arterioscler. Thromb. Vasc. Biol., 2005, vol. 25, no. 1, p. 29.

    Article  CAS  PubMed  Google Scholar 

  39. Cadroy, Y., Dupouy, D., Boneu, B., and Plaisancié, H., Polymorphonuclear leukocytes modulate tissue factor production by mononuclear cells: role of reactive oxygen species, J. Immunol., 2000, vol. 164, no. 7, p. 3822.

    Article  CAS  PubMed  Google Scholar 

  40. Görlach, A., Brandes, R.P., Bassus, S., et al., Oxidative stress and expression of p22phox are involved in the up-regulation of tissue factor in vascular smooth muscle cells in response to activated platelets, FASEB J., 2000, vol. 14, no. 11, p. 1518.

    PubMed  Google Scholar 

  41. Herkert, O., Diebold, I., Brandes, R.P., et al., NADPH oxidase mediates tissue factor-dependent surface procoagulant activity by thrombin in human vascular smooth muscle cells, Circulation, 2002, vol. 105, no. 17, p. 2030.

    Article  CAS  PubMed  Google Scholar 

  42. Swiatkowska, M., Szemraj, J., Al-Nedawi, K.N., and Pawłowska, Z., Reactive oxygen species upregulate expression of PAI-1 in endothelial cells, Cell. Mol. Biol. Lett., 2002, vol. 7, no. 4, p. 1065.

    CAS  PubMed  Google Scholar 

  43. Berenji Ardestani, S., Matchkov, V.V., Eftedal, I., and Pedersen, M.A., Single simulated heliox dive modifies endothelial function in the vascular wall of ApoE knockout male rats more than females, Front. Physiol., 2019, vol. 10, p. 1342.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brubakk, A.O., Duplancic, D., Valic, Z., et al., A single air dive reduces arterial endothelial function in man, J. Physiol., 2005, vol. 566, part 3, p. 901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Obad, A., Marinovic, J., Ljubkovic, M., et al., Successive deep dives impair endothelial function and enhance oxidative stress in man, Clin. Physiol. Funct. Imaging, 2010, vol. 30, no. 6, p. 432.

    Article  PubMed  Google Scholar 

  46. Roka-Moiia, Y., Ammann, K.R., Miller-Gutierrez, S., et al., Shear-mediated platelet activation in the free flow: II. Evolving mechanobiological mechanisms reveal an identifiable signature of activation and a bi-directional platelet dyscrasia with thrombotic and bleeding features, J. Biomech., 2021, vol. 123, p. 110415.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Casa, L.D.C. and Ku, D.N., Thrombus formation at high shear rates, Annu. Rev. Biomed. Eng., 2017, vol. 19, p. 415.

    Article  CAS  PubMed  Google Scholar 

  48. Sandrini, L., Ieraci, A., Amadio, P., et al., Impact of acute and chronic stress on thrombosis in healthy individuals and cardiovascular disease patients, Int. J. Mol. Sci., 2020, vol. 21, no. 21, p. 7818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thorsen, T., Lie, R.T., and Holmsen, H., Induction of platelet aggregation in vitro by microbubbles of nitrogen, Undersea Biomed. Res., 1989, vol. 16, no. 6, p. 453.

    CAS  PubMed  Google Scholar 

  50. Pendergast, D.R., Moon, R.E., Krasney, J.J., et al., Human physiology in an aquatic environment, Compr. Physiol., 2015, vol. 5, no. 4, p. 1705.

    Article  PubMed  Google Scholar 

  51. Anegg, U., Dietmaier, G., Maier, A., et al., Stress-induced hormonal and mood responses in scuba divers: a field study, Life Sci., 2002, vol. 70, no. 23, p. 2721.

    Article  CAS  PubMed  Google Scholar 

  52. Zarezadeh, R. and Azarbayjani, M.A., The effect of air scuba dives up to a depth of 30 metres on serum cortisol in male divers, Diving Hyperbaric Med., 2014, vol. 44, no. 3, p. 158.

    Google Scholar 

  53. Olszański, R., Radziwon, P., Piszcz, J., et al., Activation of platelets and fibrinolysis induced by saturated air dives, Aviat. Space Environ. Med., 2010, vol. 81, no. 6, p. 585.

    Article  PubMed  Google Scholar 

  54. Domoto, H., Nakabayashi, K., Hashimoto, A., et al., Decrease in platelet count during saturation diving, Aviat. Space Environ. Med., 2001, vol. 72, no. 4, p. 380.

    CAS  PubMed  Google Scholar 

  55. Lambrechts, K., Pontier, J.M., Mazur, A., et al., Effect of decompression-induced bubble formation on highly trained divers microvascular function, Physiol. Rep., 2013, vol. 1, no. 6, p. e00142.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Olszański, R., Radziwon, P., Baj, Z., et al., Changes in the extrinsic and intrinsic coagulation pathways in humans after decompression following saturation diving, Blood Coagul. Fibrinolysis, 2001, vol. 12, no. 4, p. 269.

    Article  PubMed  Google Scholar 

  57. Radziwon, P., Olszański, R., Tomaszewski, R., et al., Decreased levels of PAI-1 and alpha 2-antiplasmin contribute to enhanced fibrinolytic activity in divers, Thromb. Res., 2007, vol. 121, no. 2, p. 235.

    Article  CAS  PubMed  Google Scholar 

  58. Baj, Z., Olszański, R., Majewska, E., and Konarski, M., The effect of air and nitrox divings on platelet activation tested by flow cytometry, Aviat. Space Environ. Med., 2000, vol. 71, no. 9, p. 925.

    CAS  PubMed  Google Scholar 

  59. Olszański, R., Radziwon, P., Galar, M., et al., Diving up to 60 m depth followed by decompression has no effect on pro-enzyme and total thrombin activatable fibrinolysis inhibitor antigen concentration, Blood Coagul. Fibrinolysis, 2003, vol. 14, no. 7, p. 659.

    Article  PubMed  Google Scholar 

  60. Olszański, R., Radziwon, P., Siermontowski, P., et al., Trimix instead of air, decreases the effect of short-term hyperbaric exposures on platelet and fibrinolysis activation, Adv. Med. Sci., 2010, vol. 55, no. 2, p. 313.

    Article  PubMed  Google Scholar 

  61. Bosco, G., Yang, Z.J., Di Tano, G., et al., Effect of in-water oxygen prebreathing at different depths on decompression-induced bubble formation and platelet activation, J. Appl. Physiol., 2010, vol. 108, no. 5, p. 1077.

    Article  PubMed  Google Scholar 

  62. Pontier, J.M. and Lambrechts, K., Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression, Eur. J. Appl. Physiol., 2014, vol. 114, no. 6, p. 1175.

    Article  CAS  PubMed  Google Scholar 

  63. Madden, D., Thom, S.R., Milovanova, T.N., et al., Exercise before scuba diving ameliorates decompression-induced neutrophil activation, Med. Sci. Sports Exerc., 2014, vol. 46, no. 10, p. 1928.

    Article  CAS  PubMed  Google Scholar 

  64. Philp, R.B., Bennett, P.B., Andersen, J.C., et al., Effects of aspirin and dipyridamole on platelet function, hematology, and blood chemistry of saturation divers, Undersea Biomed. Res., 1979, vol. 6, no. 2, p. 127.

    CAS  PubMed  Google Scholar 

  65. Philp, R.B., Freeman, D., Francey, I., and Bishop, B., Hematology and blood chemistry in saturation diving: I. Antiplatelet drugs, aspirin, and VK744, Undersea Biomed. Res., 1975, vol. 2, no. 4, p. 233.

    CAS  PubMed  Google Scholar 

  66. Bakken, A.M., Farstad, M., and Holmsen, H., Fatty acids in human platelets and plasma: fish oils decrease sensitivity toward N2 microbubbles, J. Appl. Physiol., 1991, vol. 70 , no. 6, p. 2669.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was carried out within the Russian Academy of Sciences, Theme 65.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Markin.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzichkin, D.S., Markin, A.A. & Zhuravleva, O.A. Risk of Thrombosis and Mechanisms of Activation of Hemostasis in Divers after Diving. Hum Physiol 49, 709–716 (2023). https://doi.org/10.1134/S0362119723700457

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119723700457

Keywords:

Navigation