Skip to main content
Log in

Event-Related Potentials of the Human Brain during the Comparison of Visual Stimuli

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The aim of the investigation was to study the features of brain activity when comparing visual stimuli under conditions of delayed motor response. Event-related potentials (ERPs) were studied in 84 healthy subjects in a three-stimulus test, the first two stimuli were a comparison pair, and the third stimulus triggered a motor response. After presentation of the second stimulus ERPs were recorded: a complex of two waves with occipital (Oz, most pronounced in the interval 100–150 ms) and posterior temporal localization (P7, P8, 190–270 ms); negative wave in the frontal regions (Fz, 240–300 ms) and positive wave in the parietal regions (Pz, 270–450 ms). Brain responses differ in amplitude in case of a match and discrepancy of visual stimuli. The article discusses the physiological meaning of these waves and their differences under two conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bridger, E.K., Kursawe, A.L., Bader, R., et al., Age effects on associative memory for novel picture pairings, Brain Res., 2017, vol. 1664, p. 102.

    Article  CAS  PubMed  Google Scholar 

  2. Spironelli, C., Romeo, Z., Maffei, A., and Angrilli, A., Comparison of automatic visual attention in schizophrenia, bipolar disorder, and major depression: evidence from P1 event-related component, Psychiatry Clin. Neurosci., 2019, vol. 73, no. 6, p. 331.

    Article  PubMed  Google Scholar 

  3. Forschack, N., Gundlach, C., Hillyard, S., and Müller, M.M., Electrophysiological evidence for target facilitation without distractor suppression in two-stimulus search displays, Cereb. Cortex, 2022, vol. 32, no. 17, p. 3816.

    Article  PubMed  Google Scholar 

  4. Kappenman, E.S., Farrens, J.L., Zhang, W., et al., ERP CORE: an open resource for human event-related potential research, NeuroImage, 2021, vol. 225, p. 117465.

    Article  PubMed  Google Scholar 

  5. Stahl, J., Wiese, H., and Schweinberger, S.R., Learning task affects ERP-correlates of the own-race bias, but not recognition memory performance, Neuropsychologia, 2010, vol. 48, no. 7, p. 2027.

    Article  PubMed  Google Scholar 

  6. He, J., Zheng, Y., Fan, L., et al., Automatic processing advantage of cartoon face in internet gaming disorder: evidence from P100, N170, P200, and MMN, Front. Psychiatry, 2019, vol. 10, p. 824.

  7. Male, A.G., O’Shea, R.P., Schröger, E., et al., The quest for the genuine visual mismatch negativity (vMMN): event-related potential indications of deviance detection for low-level visual features, Psychophysiology, 2020, vol. 57, no. 6. e13576

    Article  PubMed  Google Scholar 

  8. Kropotov, J., Ponomarev, V., Tereshchenko, E.P., et al., Effect of aging on ERP components of cognitive control, Front. Aging Neurosci., 2016, vol. 8, p. 69.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kropotov, Yu.D., Ponomarev, V.A., Pronina, M.V., and Polyakova, N.V., Effects of repetition and stimulus mismatch in sensory visual components of event-related potentials, Hum. Physiol., 2019, vol. 45, no. 4, p. 349. https://doi.org/10.1134/S0362119719040066

    Article  Google Scholar 

  10. Wang, P., Tan, C.H., Li, Y., et al., Event-related potential N270 as an index of social information conflict in explicit processing, Int. J. Psychophysiol., 2018, vol. 123, p. 199.

    Article  PubMed  Google Scholar 

  11. Rivera, B. and Soylu, F., Incongruity in fraction verification elicits N270 and P300 ERP effects, Neuropsychologia, 2021, vol. 161, p. 108015.

    Article  PubMed  Google Scholar 

  12. Kropotov, J.D. and Ponomarev, V.A., Differentiation of neuronal operations in latent components of event-related potentials in delayed match-to-sample tasks, Psychophysiology, 2015, vol. 52, no. 6, p. 826.

    Article  PubMed  Google Scholar 

  13. Gemba, H. and Sasaki, K., Potential related to no-go reaction of go/no-go hand movement task with color discrimination in human, Neurosci. Lett., 1989, vol. 101, no. 3, p. 263.

    Article  CAS  PubMed  Google Scholar 

  14. Jodo, E. and Kayama, Y., Relation of a negative ERP component to response inhibition in a go/no-go task, Electroencephalogr. Clin. Neurophysiol., 1992, vol. 82, no. 6, p. 47715.

    Article  Google Scholar 

  15. Finkenzeller, T., Doppelmayr, M., Würth, S., and Amesberger, G., Impact of maximal physical exertion on interference control and electrocortical activity in well-trained persons, Eur. J. Appl. Physiol., 2018, vol. 118, no. 12, p. 2509.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Feldman, J.L. and Freitas, A.L., An analysis of N2 event-related potential correlates of sequential and response-facilitation effects in cognitive control, J. Psychophysiol., 2018, vol. 33, no. 2, p. 85.

    Article  Google Scholar 

  17. Zabelina, D.L. and Ganis, G., Creativity and cognitive control: behavioral and ERP evidence that divergent thinking, but not real-life creative achievement, relates to better cognitive control, Neuropsychologia, 2018, vol. 118, part A, p. 20.

  18. Xiao, Y., Wu, J., Tang, W., et al., Cognition impairment prior to errors of working memory based on event-related potential, Front. Behav. Neurosci., 2019, vol. 13, p. 13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Overbye, K., Walhovd, K.B., Fjell, A.M., et al., Electrophysiological and behavioral indices of cognitive conflict processing across adolescence, Dev. Cognit. Neurosci., 2021, vol. 48, p. 100929.

    Article  Google Scholar 

  20. Polich, J., Updating P300: an integrative theory of P3a and P3b, Clin. Neurophysiol., 2007, vol. 118, no. 10, p. 2128.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hillman, C.H., Weiss, E.P., Hagberg, J.M., and Hatfield, B.D., The relationship of age and cardiovascular fitness to cognitive and motor processes, Psychophysiology, 2002, vol. 39, no. 3, p. 303.

    Article  PubMed  Google Scholar 

  22. Vigário, R.N., Extraction of ocular artifacts from EEG using independent component analysis, Electroencephalogr Clin. Neurophysiol., 1997, vol. 103, no. 3, p. 395.

    Article  PubMed  Google Scholar 

  23. Dong, L., Li, F., Liu, Q., et al., MATLAB toolboxes for reference electrode standardization technique (REST) of scalp EEG, Front. Neurosci., 2017, vol. 11, p. 601.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hu, S., Lai, Y., Valdes-Sosa, P.A., et al., How do reference montage and electrodes setup affect the measured scalp EEG potentials? J. Neural Eng., 2018, vol. 15, no. 2, p. 026013.

    Article  PubMed  Google Scholar 

  25. Perrin, F., Pernier, J., Bertrand, O., and Echallier, J.F., Spherical splines for scalp potential and current density mapping, Electroencephalogr Clin. Neurophysiol., 1989, vol. 72, no. 2, p. 184.

    Article  CAS  PubMed  Google Scholar 

  26. Kayser, J. and Tenke, C.E., Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks, Clin. Neurophysiol., 2006, vol. 117, no. 2, p. 348.

    Article  PubMed  Google Scholar 

  27. Kayser, J. and Tenke, C.E., Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: II. Adequacy of low–density estimates, Clin. Neurophysiol., 2006, vol. 117, no. 2, p. 369.

    Article  PubMed  Google Scholar 

  28. Maris, E. and Oostenveld, R., Nonparametric statistical testing of EEG- and MEG-data, J. Neurosci. Methods, 2007, vol. 164, no. 1, p. 177.

    Article  PubMed  Google Scholar 

  29. Pernet, C.R., Latinus, M., Nichols, T.E., and Rousselet, G.A., Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: a simulation study, J. Neurosci. Methods, 2015, vol. 250, p. 85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nikishena, I.S., Ponomarev, V.A., and Kropotov, Yu.D., Event-related potentials in audio-visual cross-modal test in comparison of word pairs, Hum. Physiol., 2021, vol. 47, no. 4, p. 459. https://doi.org/10.1134/S0362119721020109

    Article  Google Scholar 

  31. Ahmadi, M., McDevitt, E.A., Silver, M.A., and Mednick, S.C., Perceptual learning induces changes in early and late visual evoked potentials, Vision Res., 2018, vol. 152, p. 101.

    Article  PubMed  Google Scholar 

  32. Balla, V.R., Szalóki, S., Kilencz, T., et al., A novel experimental paradigm with improved ecological validity reveals robust action-associated enhancement of the N1 visual event-related potential in healthy adults, Behav. Brain Res., 2020, vol. 379, p. 112353.

    Article  PubMed  Google Scholar 

  33. Woldorff, M.G., Liotti, M., Seabolt, M., et al., The temporal dynamics of the effects in occipital cortex of visual-spatial selective attention, Brain Res. Cognit. Brain Res., 2002, vol. 15, no. 1, p. 1.

    Article  CAS  Google Scholar 

  34. Tartaglia, EM, Mongillo, G. and Brunel, N., On the relationship between persistent delay activity, repetition enhancement and priming, Front. Psychol., 2015, vol. 5, p. 1590.

    Article  PubMed  PubMed Central  Google Scholar 

  35. de Gardelle, V., Waszczuk, M., Egner, T., and Summerfield, C., Concurrent repetition enhancement and suppression responses in extrastriate visual cortex, Cereb. Cortex, 2013, vol. 23, no. 9, p. 2235.

    Article  PubMed  Google Scholar 

  36. Zhang, X., Wang, Y., Li, Sh., and Wang, L., Event-related potential N270, a negative component to identification of conflicting information following memory retrieval, Clin. Neurophysiol., 2003, vol. 114, no. 12, p. 2461.

    Article  PubMed  Google Scholar 

  37. Folstein, J.R. and Van Petten, C., Influence of cognitive control and mismatch on the n2 component of the ERP: a review? Psychophysiology, 2008, vol. 45, no. 1, p. 152.

    PubMed  Google Scholar 

  38. Scannella, S., Pariente, J., De Boissezon, X., et al., N270 sensitivity to conflict strength and working memory: a combined ERP and sLORETA study, Behav. Brain Res., 2016, vol. 297, p. 231.

    Article  PubMed  Google Scholar 

  39. Verleger, R., Grauhan, N., and Śmigasiewicz, K., Is P3 a strategic or a tactical component? Relationships of P3 sub-components to response times in oddball tasks with go, no-go and choice responses, NeuroImage, 2016, vol. 143, p. 223.

    Article  PubMed  Google Scholar 

  40. Astle, D.E., Jackson, G.M., and Swainson, R., Dissociating neural indices of dynamic cognitive control in advance task–set preparation: an ERP study of task switching, Brain Res., 2006, vol. 1125, no. 1, p. 94.

    Article  CAS  PubMed  Google Scholar 

  41. Elke, S. and Wiebe, S.A., Proactive control in early and middle childhood: an ERP study, Dev. Cognit. Neurosci., 2017, vol. 26, p. 28.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the students of St. Petersburg State Pediatric Medical University for participating in the study.

Funding

The study was carried out within the state assignment of the Ministry of Education and Science on topic no. 122041300021-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Nikishena.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The study was conducted in accordance with the principles of biomedical ethics formulated in the Declaration of Helsinki of 1964 and its subsequent updates and approved by the Ethics Committee of the Institute of the Human Brain, Russian Academy of Sciences (St. Petersburg).

Informed consent. Each participant in the study provided a voluntary written informed consent signed by him after explaining to him the potential risks and benefits, as well as the nature of the upcoming study.

CONFLICT OF INTEREST

The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.

AUTHOR CONTRIBUTION

I.S. Nikishena—development of a three-stimulus test, EEG recording under the conditions of a three-stimulus test, statistical data processing, preparation of the text of the article. V.A. Ponomarev—development of a three-stimulus test, statistical data processing, preparation of the text of the article. J.D. Kropotov—discussion of the results, preparation of the text of the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikishena, I.S., Ponomarev, V.A. & Kropotov, J.D. Event-Related Potentials of the Human Brain during the Comparison of Visual Stimuli. Hum Physiol 49, 264–273 (2023). https://doi.org/10.1134/S0362119723700329

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119723700329

Keywords:

Navigation