Skip to main content
Log in

Involvement of Broca’s Area and Its Right Hemispheric Homologue in Acquiring Abstract and Concrete Semantics: Transcranial Direct Current Stimulation Study

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The study compared effects of transcranial direct current stimulation (tDCS) of Broca’s area and of its right hemispheric homologue on the acquisition of novel concrete and abstract words. Word/concept acquisition was achieved through reading sets of sentences, which incorporated novel words, gradually revealing their meaning through context. Before the learning session, a 15-min anodal or cathodal stimulation of one of the target areas was applied. A lexical decision task was used to assess the learning outcomes immediately after the learning session and 24 h later. The results showed a larger number of correct responses after right hemispheric tDCS, in comparison with that of Broca’s area in the left hemisphere. These results suggest that the right hemispheric counterpart of Broca’s area is involved in the processing and acquisition of new concrete and abstract semantics. Furthermore, they demonstrate facilitating effects of tDCS on the processes of overnight consolidation of newly formed word memory traces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Borghi, A.M. and Binkofski, F., Words as Social Tools: an Embodied View on Abstract Concepts, New York: Springer-Verlag, 2014.

    Book  Google Scholar 

  2. Fliessbach, K., Weis, S., Klaver, P., et al., The effect of word concreteness on recognition memory, NeuroImage, 2006, vol. 32, no. 3, p. 1413.

    Article  CAS  PubMed  Google Scholar 

  3. Borghi, A.M., A future of words: language and the challenge of abstract concepts, J. Cognit., 2020, vol. 3, no. 1, p. 42.

    Article  Google Scholar 

  4. Pulvermüller, F., How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics, Trends Cognit. Sci., 2013, vol. 17, no. 9, p. 458.

    Article  Google Scholar 

  5. Binder, J.R., Westbury, C.F., McKiernan, K.A., et al., Distinct brain systems for processing concrete and abstract concepts, J. Cognit. Neurosci., 2005, vol. 17, no. 6, p. 905.

    Article  CAS  Google Scholar 

  6. Desai, R.H., Reilly, M., and van Dam, W., The multifaceted abstract brain, Philos. Trans. R. Soc., B, 2018, vol. 373, no. 1752, p. 20170122.

  7. Mkrtychian, N., Blagovechtchenski, E., Kurmakae-va, D., et al., Concrete vs. abstract semantics: from mental representations to functional brain mapping, Front. Hum. Neurosci., 2019, vol. 13, p. 267.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Broca, P.P., Remarques sur le siège de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole), Bull. Mem. Soc. Anat. Paris, 1861, no. 6, p. 330.

  9. Sahin, N.T., Pinker, S., Cash, S.S., et al., Sequential processing of lexical, grammatical, and phonological information within Broca’s area, Science, 2009, vol. 326, no. 5951, p. 445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tomasino, B., Tronchin, G., Marin, D., et al., Noun–verb naming dissociation in neurosurgical patients, Aphasiology, 2018, vol. 33, no. 12, p. 1418.

    Article  Google Scholar 

  11. Fiebach, C.J., Schlesewsky, M., Lohmann, G., et al., Revisiting the role of Broca’s area in sentence processing: syntactic integration versus syntactic working memory, Hum. Brain Mapp., 2005, vol. 24, no. 2, p. 79.

    Article  CAS  PubMed  Google Scholar 

  12. Friederici, A.D., The neural basis for human syntax: Broca’s area and beyond, Curr. Opin. Behav. Sci., 2018, vol. 21, p. 88.

    Article  Google Scholar 

  13. Heim, S., Eickhoff, S.B., and Amunts, K., Specialisation in Broca’s region for semantic, phonological, and syntactic fluency? NeuroImage, 2008, vol. 40, no. 3, p. 1362.

    Article  PubMed  Google Scholar 

  14. Binder, J.R., Desai, R.H., Graves, W.W., and Conant, L.L., Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies, Cereb. Cortex, 2009, vol. 19, no. 12, p. 2767.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schell, M., Friederici, A.D., and Zaccarella, E., Neural classification maps for distinct word combinations in Broca’s area, Front. Hum. Neurosci., 2022, vol. 16, p. 930849.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Berkovich-Ohana, A., Noy, N., Harel, M., et al., Inter-participant consistency of language-processing networks during abstract thoughts, NeuroImage, 2020, vol. 211, p. 116626.

    Article  PubMed  Google Scholar 

  17. Fini, C., Zannino, G.D., Orsoni, M., et al., Articulatory suppression delays processing of abstract words: the role of inner speech, Q. J. Exp. Psychol., 2022, vol. 75, no. 7, p. 1343.

    Article  Google Scholar 

  18. Mashal, N., Faust, M., and Hendler, T., The role of the right hemisphere in processing nonsalient metaphorical meanings: application of principal components analysis to fMRI data, Neuropsychologia, 2005, vol. 43, no. 14, p. 2084.

    Article  CAS  PubMed  Google Scholar 

  19. Moro, A., Tettamanti, M., Perani, D., et al., Syntax and the brain: disentangling grammar by selective anomalies, NeuroImage, 2001, vol. 13, no. 1, p. 110.

    Article  CAS  PubMed  Google Scholar 

  20. Friederici, A.D., Opitz, B., and von Cramon, D.Y., Segregating semantic and syntactic aspects of processing in the human brain: an fMRI investigation of different word types, Cereb. Cortex, 2000, vol. 10, no. 7, p. 698.

    Article  CAS  PubMed  Google Scholar 

  21. Sabsevitz, D.S., Medler, D.A., Seidenberg, M., and Binder, J.R., Modulation of the semantic system by word imageability, NeuroImage, 2005, vol. 27, no. 1, p. 188.

    Article  CAS  PubMed  Google Scholar 

  22. Blank, S.C., Bird, H., Turkheimer, F., and Wise, R.J.S., Speech production after stroke: the role of the right pars opercularis, Ann. Neurol., 2003, vol. 54, no. 3, p. 310.

    Article  PubMed  Google Scholar 

  23. Scott, S.K., The neural control of volitional vocal production—from speech to identity, from social meaning to song, Philos. Trans. R. Soc., B, 2022, vol. 377, no. 1841, p. 20200395.

  24. Reato, D., Salvador, R., Bikson, M., et al., Principles of transcranial direct current stimulation (tDCS): introduction to the biophysics of tDCS, Practical Guide to Transcranial Direct Current Stimulation, Knotkova, H., Nitsche, M., Bikson, M., and Woods, A., Eds., Cham: Springer-Verlag, 2019, p. 45.

    Google Scholar 

  25. Roy, A.V., Camchong, J., and Lim, K.O., Principles and applications of transcranial electrical stimulation, Engineering in Medicine: Advances and Challenges, Iaizzo, P., Ed., Elsevier, 2018, p. 319.

    Google Scholar 

  26. Bianco, G., Feurra, M., Fadiga, L., et al., Bi-hemispheric effects on corticospinal excitability induced by repeated sessions of imagery versus observation of actions, Restor. Neurol. Neurosci., 2012, vol. 30, no. 6, p. 481.

    PubMed  Google Scholar 

  27. Santarnecchi, E., Feurra, M., Barneschi, F., et al., Time course of corticospinal excitability and autonomic function interplay during and following monopolar tDCS, Front. Psychiatry, 2014, vol. 5, p. 86.

    Article  PubMed  PubMed Central  Google Scholar 

  28. de Vries, M.H., Barth, A.C., Maiworm, S., et al., Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar, J. Cognit. Neurosci., 2010, vol. 22, no. 11, p. 2427.

    Article  Google Scholar 

  29. Fiori, V., Cipollari, S., Di Paola, M., et al., tDCS stimulation segregates words in the brain: evidence from aphasia, Front. Hum. Neurosci., 2013, vol. 7, p. 269.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rosso, C., Valabregue, R., Arbizu, C., et al., Connectivity between right inferior frontal gyrus and supplementary motor area predicts after-effects of right frontal cathodal tDCS on picture naming speed, Brain Stimul., 2014, vol. 7, no. 1, p. 122.

    Article  PubMed  Google Scholar 

  31. Marangolo, M., Fiori, V., Gelfo, F., et al., Bihemispheric tDCS enhances language recovery but does not alter BDNF levels in chronic aphasic patients, Restor. Neurol. Neurosci., 2014, vol. 32, no. 2, p. 367.

    CAS  PubMed  Google Scholar 

  32. de Aguiar, V., Bastiaanse, R., Capasso, R., et al., Can tDCS enhance item-specific effects and generalization after linguistically motivated aphasia therapy for verbs? Front. Behav. Neurosci., 2015, vol. 9, p. 190.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Matar, S.J., Sorinola, I.O., Newton, C., and Pavlou, M., Transcranial direct-current stimulation may improve discourse production in healthy older adults, Front. Neurol., 2020, vol. 11, p. 935.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schimke, E.A.E., Angwin, A.J., Cheng, B.B.Y., and Copland, D.A., The effect of sleep on novel word learning in healthy adults: a systematic review and meta-analysis, Psychon. Bull. Rev., 2021, vol. 28, no. 6, p. 1811.

    Article  PubMed  Google Scholar 

  35. Liu, Y. and van Hell, J.G., Learning novel word meanings: an ERP study on lexical consolidation in monolingual, inexperienced foreign language learners, Lang. Learn., 2020, vol. 70, p. 45.

    Article  Google Scholar 

  36. Bakker, I., Takashima, A., van Hell, J.G., et al., Competition from unseen or unheard novel words: lexical consolidation across modalities, J. Mem. Lang., 2014, vol. 73, no. 1, p. 116.

    Article  Google Scholar 

  37. Partanen, E., Leminen, A., de Paoli, S., et al., Flexible, rapid and automatic neocortical word form acquisition mechanism in children as revealed by neuromagnetic brain response dynamics, NeuroImage, 2017, vol. 155, p. 450.

    Article  PubMed  Google Scholar 

  38. Vasilyeva, M.J., Knyazeva, V.M., Aleksandrov, A.A., and Shtyrov, Y., Neurophysiological correlates of fast mapping of novel words in the adult brain, Front. Hum. Neurosci., 2019, vol. 13, p. 304.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ihara, A.S., Mimura, T., Soshi, T., et al., Facilitated lexical ambiguity processing by transcranial direct current stimulation over the left inferior frontal cortex, J. Cognit. Neurosci., 2015, vol. 27, no. 1, p. 26.

    Article  Google Scholar 

  40. Kurmakaeva, D., Blagovechtchenski, E., Gnedykh, D., et al., Acquisition of concrete and abstract words is modulated by tDCS of Wernicke’s area, Sci. Rep., 2021, vol. 11, no. 1, p. 1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haro, J., Guasch, M., Vallès, B., and Ferré, P., Is pupillary response a reliable index of word recognition? Evidence from a delayed lexical decision task, Behav. Res. Methods, 2017, vol. 49, no. 5, p. 1930.

    Article  PubMed  Google Scholar 

  42. Perea, M., Rosa, E., and Gómez, C., The frequency effect for pseudowords in the lexical decision task, Percept. Psychophys., 2005, vol. 67, no. 2, p. 301.

    Article  PubMed  Google Scholar 

  43. Monaghan, J. and Ellis, A.W., What exactly interacts with spelling-sound consistency in word naming? J. Exp. Psychol. Learn. Mem. Cognit., 2002, vol. 28, no. 1, p. 183.

    Article  Google Scholar 

  44. Troche, J., Crutch, S., and Reilly, J., Clustering, hierarchical organization, and the topography of abstract and concrete nouns, Front. Psychol., 2014, vol. 5, p. 360.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Paivio, A., Mental Representations: a Dual Coding Approach, New York: Oxford University Press, 1986.

    Google Scholar 

  46. Rukovodstvo po funktsional’noi mezhpolusharnoi asimmetrii (Guide to Functional Hemispheric Asymmetry), Moscow: Nauchnyi Mir, 2009.

  47. Nazarova, M. and Blagovechtchenski, E., Modern brain mapping—what do we map nowadays? Front. Psychiatry, 2015, vol. 6, p. 89.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Margarita Filippova and Olga Shcherbakova for valuable assistance provided in creating the stimulus set; Ekaterina Perikova, in recruiting participants; and Diana Tsvetova and Anastasia Filatova, in data collecting.

Funding

This study was supported by St. Petersburg State University, project no. 94 615 876.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Gnedykh.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed in studies involving human participants were in accordance with the biomedical ethics principles formulated in the 1964 Helsinki Declaration and its later amendments and approved by the local Bioethics Committee of St. Petersburg State University (St. Petersburg).

Conflict of interest. The authors declare that they have no conflicts of interest.

Informed consent. Each study participant provided a signed voluntary written informed consent after explanation of the potential risks and benefits, as well as the nature of the upcoming study, to him.

AUTHOR CONTRIBUTION

D.S. Gnedykh—data collection, visualization, writing the text of the article; N.A. Mkrtychyan—data collection, mathematical and statistical data processing; E.D. Blago-vechtchenski—methodology, editing the text of the article; S.N. Kostromina—study design, methodology, editing the text of the article; Y.Y. Shtyrov—study design, methodology, scientific guidance, editing the text of the article.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnedykh, D.S., Blagovechtchenski, E.D., Kostromina, S.N. et al. Involvement of Broca’s Area and Its Right Hemispheric Homologue in Acquiring Abstract and Concrete Semantics: Transcranial Direct Current Stimulation Study. Hum Physiol 49, 274–280 (2023). https://doi.org/10.1134/S0362119723700317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119723700317

Keywords:

Navigation