Skip to main content
Log in

EEG Functional Connectivity in Motor Tasks: Experience of Application of Graph Analysis

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The goal of this work is the application of graph analysis for the research of brain network organization during motor tasks (clenching/unclenching the fingers of the right hand). In this approach the brain is considered as a single network (graph), where the nodes are individual leads, and the edges are coherence indicators. The approach allows one to study the processes of segregation (network division into clusters) and integration (network unification) as well as to identify the most highly active nodes in the networks through which the greatest volumes of information transfers. The work revealed that the movement of the right hand is associated with global and local neural network rearrangements, an increase of global network efficiency of the entire brain and left hemisphere separately and the formation of local clusters for processing information in areas, connected with hand movement and in some non-specific ways for the hand movement areas, probably connected with executive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Mukhina, T.S., Sharova, E.V., Boldyreva, G.N., et al., The neuroanatomy of active hand movement in patients with severe traumatic brain injury: Analysis of functional magnetic resonance imaging data, Nevrol., Neiropsikhiatr., Psikhosomatika, 2017, vol. 9, no. 1, p. 27.

    Google Scholar 

  2. Stolbkov, Yu.K., Moshonkina, T.R., Orlov, I.V., et al., The neurophysiological correlates of real and imaginary locomotion, Hum. Physiol., 2019, vol. 45, no. 1, p. 104. https://doi.org/10.1134/S0362119719010146

    Article  Google Scholar 

  3. Nakata, H., Domoto, R., Mizuguchi, N., et al., Negative BOLD responses during hand and foot movements: An fMRI study, PLoS One, 2019, vol. 14, no. 4, p. e0215736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armstrong, S., Sale, M.V., and Cunnington, R., Neural oscillations and the initiation of voluntary movement, Front. Psychol., 2018, vol. 9, p. 2509.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bayot, M., Dujardin, K., Tard, C., et al., The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning, Neurophysiol. Clin., 2018, vol. 48, no. 6, p. 361.

    Article  PubMed  Google Scholar 

  6. Delval, A., Bayot, M., Defebvre, L., and Dujardin, K., Cortical oscillations during gait—wouldn’t walking be so automatic? Brain Sci., 2020, vol. 10, no. 2, p. 90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scanlon, J.E.M., Jacobsen, N.S.J., Maack, M.C., and Debener, S., Stepping in time: Alpha-mu and beta oscillations during a walking synchronization task , NeuroImage, 2022, vol. 253, p. 119099.

    Article  CAS  PubMed  Google Scholar 

  8. Vasilyev, A.N., Liburkina, S.P., and Kaplan, A.Ya., Lateralization of EEG patterns in humans on presentation of hand movements in a brain–computer interface, Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 2016, vol. 66, no. 3, p. 302.

    CAS  Google Scholar 

  9. Pavlenko, V.B., Eismont, E.V., Galkin, D.V., and Kaida, A.I., Reactivity of sensorimotor beta-rhythm in children is associated with intelligence, as it reflects the activity of mirror and anti-mirror brain systems), Uch. Zap. Krym. Fed. Univ. im. V. I. Vernadskogo: Biol. Khim., 2017, vol. 3, no. 1, p. 56.

    Google Scholar 

  10. Kerechanin, Y.V., Husek, D., Bobrov, P.D., et al., Sources of the electrical activity of brain areas involving in imaginary movements, Neurosci. Behav. Physiol., 2020, vol. 50, no. 7, p. 845. https://doi.org/10.1007/s11055-020-00977-0

    Article  Google Scholar 

  11. Frolov, A.A., Fedotova, I.R., Husek, D., and Bobrov, P.D., Rhythmic brain activity and a brain—computer interface based on imaginary movements, Usp. Fiziol. Nauk., 2017, vol. 48, no. 3, p. 72.

    Google Scholar 

  12. Boldyreva, G.N., Sharova, E.V., Zhavoronkova, L.A., et al., EEG and fMRI reactions of a healthy brain at active and passive movements by a leading hand, Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 2014, vol. 64, no. 5, p. 488.

    CAS  Google Scholar 

  13. Boldyreva, G.N., Sharova, E.V., Zhavoronkova, L.A., et al., Structural and functional peculiarity of brain activity to performance and imaginary motor tasks in healthy persons (EEG and fMRI study), Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 2013, vol. 63, no. 3, p. 316.

    CAS  Google Scholar 

  14. Sharova, E.V., Boldyreva, G.N., Lysachev, D.A., Kulikov, M.A., et al., EEG correlates of passive hand movement in patients after traumatic brain injury with preserved FMRI motor response, Hum. Physiol., 2019, vol. 45. № 5, p. 483. https://doi.org/10.1134/S0362119719050177

    Article  Google Scholar 

  15. Sharova, E.V., Boldyreva, G.N., Zhavoronkova, L.A., et al., Search for EEG markers of an arbitrary component of human motor activity, Sovrem. Probl. Nauki Obraz., 2020, no. 3, p. 56.

  16. Bernshtein, N.A., Ocherki po fiziologii dvizhenii i fiziologii aktivnosti (Essays on the Physiology of Movements and the Physiology of Activity), Moscow: Meditsina, 1966.

  17. Knyazev, B., Augusta, C., and Taylor, G.W., Learning temporal attention in dynamic graphs with bilinear interactions, PLoS One, 2021, vol. 16, no. 3, p. e0247936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fraga-González, G., Smit, D.J.A., van der Molen, M.J.W., et al., Graph analysis of EEG functional connectivity networks during a letter-speech sound binding task in adult dyslexics , Front. Psychol., 2021, vol. 12, p. 767839.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hatlestad-Hall, C., Bruña, R., Syvertsen, M.R., et al., Source-level EEG and graph theory reveal widespread functional network alterations in focal epilepsy, Clin. Neurophysiol., 2021, vol. 132, no. 7, p. 1663.

    Article  PubMed  Google Scholar 

  20. Sporns, O., Graph theory methods: Applications in brain networks, Dialogues Clin. Neurosci., 2018, vol. 20, no. 2, p. 111.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vecchio, F., Tomino, C., Miraglia, F., et al., Cortical connectivity from EEG data in acute stroke: A study via graph theory as a potential biomarker for functional recovery , Int. J. Psychophysiol., 2019, vol. 146, p. 133.

    Article  PubMed  Google Scholar 

  22. Khramov, A.E., Frolov, N.S., Maksimenko, V.A., et al., Functional networks of the brain: From connectivity restoration to dynamic integration, Phys. Usp., 2021, vol. 64, no. 6, p. 584. https://doi.org/10.3367/UFNe.2020.06.038807

    Article  Google Scholar 

  23. Vigasina, K.D., Proshina, E.A., Gotovtsev, P.M., et al., Approaches to the use of graph theory to study the human EEG in health and cerebral pathology, Neurosci. Behav. Physiol., 2023, vol. 53, no. 3, p. 381. https://doi.org/10.1007/s11055-023-01437-1

    Article  Google Scholar 

  24. Li, T., Xue, T., Wang, B., and Zhang, J., Decoding voluntary movement of single hand based on analysis of brain connectivity by using EEG signals, Front. Hum. Neurosci., 2018, vol. 12, p. 381.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Filho, C.A.S., Attux, R., and Castellano, G., Can graph metrics be used for EEG-BCIs based on hand motor imagery? Biomed. Signal Process. Control, 2018, vol. 40, no. 3, p. 359.

    Article  Google Scholar 

  26. Ahmedt-Aristizabal, D., Armin, M.A., Denman, S., et al., Graph-based deep learning for medical diagnosis and analysis: Past, present and future // Sensors (Basel), 2021, vol. 21, no. 14, p. 4758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Delvigne, V., Wannous, H., Dutoit, T., et al., PhyDAA: Physiological Dataset Assessing Attention, IEEE Trans. Circuits Syst. Video Technol., 2021, vol. 32, no. 5, p. 1.

    Google Scholar 

  28. Dell’Italia, J., Johnson, M.A., Vespa, P.M., and Monti, M.M., Network analysis in disorders of consciousness: Four problems and one proposed solution (exponential random graph models), Front. Neurol., 2018, vol. 9, p. 439.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Utianski, R.L., Caviness, J.N., Straaten, E.C., et al., Graph theory network function in Parkinson’s disease assessed with electroencephalography, Clin. Neurophysiol., 2016, vol. 127, no. 5, p. 2228.

    Article  PubMed  Google Scholar 

  30. Boldyreva, G.N., Zhavoronkova, L.A., Sharova, E.V., and Dobronravova, I.S., Electroencephalografic intercentral interaction as a reflection of normal and pathological human brain activity, Span. J. Psychol., 2007, vol. 10, no. 1, p. 167.

    Article  PubMed  Google Scholar 

  31. Babiloni, C., Brancucci, A., Vecchio, F., et al., Anticipation of somatosensory and motor events increases centro-parietal functional coupling: An EEG coherence study // Clin. Neurophysiol., 2006, vol. 117, no. 5, p. 1000.

    Article  PubMed  Google Scholar 

  32. Zhavoronkova, L.A., Moraresku, L., Boldyreva, G.N., et al., FMRI and EEG reactions to hand motor tasks in patients with mild traumatic brain injury: Left-hemispheric sensitivity to trauma, Behav. Brain Sci., 2019, vol. 9, no. 6, p. 273.

    Article  Google Scholar 

  33. Bosch-Bayard, J., Girini, K., Biscay, R.J., et al., Resting EEG effective connectivity at the sources in developmental dysphonetic dyslexia: Differences with non-specific reading delay, Int. J. Psychophysiol., 2020, vol. 153, p. 135.

    Article  PubMed  Google Scholar 

  34. Basharpoor, S., Heidari, F., and Molavi, P., EEG coherence in theta, alpha, and beta bands in frontal regions and executive functions, Appl. Neuropsychol.: Adult, 2021, vol. 28, no. 3, p. 310.

    PubMed  Google Scholar 

  35. Quiroz, G., A. Espinoza-Valdez, A., Salido-Ruiz, R.A., and Mercado, L., Coherence analysis of EEG in locomotion using graphs, Rev. Mex. Ing. Biomed., 2017, vol. 38, no. 1, p. 235.

    Article  Google Scholar 

  36. Ji, C., Maurits, N. and Roerdink, J.B.T.M., Data-driven visualization of multichannel EEG coherence networks based on community structure analysis, Appl. Network Sci., 2018, vol. 3, no. 1, p. 41.

    Article  Google Scholar 

  37. Vecchio, F., Pappalettera, C., Miraglia, F., et al., Prognostic role of hemispherical functional connectivity in stroke: A study via graph theory versus coherence of electroencephalography rhythms, Stroke, 2023, vol. 54, no. 2, p. 499.

    Article  PubMed  Google Scholar 

  38. Rusinov, V.S., Grindel’, O.M., Boldyreva, G.N., and Vakar, E.M., Biopotentsialy mozga cheloveka (Biopotentials of Human Brain), Moscow: Meditsina, 1987.

  39. Sharova, E.V., Boldyreva, G.N., Kulikov, M.A., et al., EEG correlates of the states of visual and auditory attention in healthy subjects, Hum. Physiol., 2009, vol. 35, no. 1, p. 1. https://doi.org/10.1134/S0362119709010010

    Article  Google Scholar 

  40. Grindel’, O.M., Optimal level of EEG coherence and its importance in evaluating the functional state of the human brain, Zh. Vyssh. Nervn. Deyat. Im. I. P. Pavlova, 1980, vol. 30, no. 1, p. 62.

    Google Scholar 

  41. Bullmore, E. and Sporns, O., Complex brain networks: Graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci., 2009, vol. 10, no. 3, p. 186.

    Article  CAS  PubMed  Google Scholar 

  42. Sporns, O., Networks of the Brain, MIT Press, Cambridge, MA, 2010.

    Book  Google Scholar 

  43. Humphries, M. and Gurney, K., Network ‘Small-World-Ness’: A quantitative method for determining canonical network equivalence, PloS One, 2008, vol. 3, no. 4, p. e0002051.

    Article  PubMed  Google Scholar 

  44. Zhavoronkova, L.A., Mezhpolusharnaya asimmetriya mozga cheloveka (pravshi—levshi) (Interhemisphere Asymmetry of the Human Brain (Right-Handers, Left-Handers)), Moscow: Yurait, 2019, 3rd ed.

  45. Koessler, L., Maillard, L., Benhadid, A., et al., Automated cortical projection of EEG sensors: Anatomical correlation via the international 10–10 system, NeuroImage, 2009, vol. 46, no. 1, p. 64.

    Article  CAS  PubMed  Google Scholar 

  46. Smolker, H.R., Friedman, N.P., Hewitt, J.K., and Banich, M.T., Neuroanatomical correlates of the unity and diversity model of executive function in young adults, Front. Hum. Neurosci., 2018, vol. 12, p. 283.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yarets, M.Y., Sharova, E.V., Smirnov, A.S., et al., Analysis of the structural-functional organization of a counting task in the context of a study of executive functions, Neurosci. Behav. Physiol., 2019, vol. 49, no. 6, p. 694. https://doi.org/10.1007/s11055-019-00789-x

    Article  Google Scholar 

  48. Grefkes, C., Nowak, D.A., Eickhoff, S.B., et al., Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging, Ann. Neurol., 2008, vol. 63, no. 2, p. 236.

    Article  PubMed  Google Scholar 

  49. Stephan, K.E., Penny, W.D., Moran, R.J., et al., Ten simple rules for dynamic causal modeling, NeuroImage, 2010, vol. 49, no. 4, p. 3099.

    Article  CAS  PubMed  Google Scholar 

  50. Desmurget, M. and Sirigu, A., A parietal-premotor network for movement intention and motor awareness, Trends Cognit. Sci., 2009, vol. 13, no. 10, p. 411.

    Article  Google Scholar 

  51. Petersen, S.E. and Posner, M.I., The attention system of the human brain: 20 years after, Annu. Rev. Neurosci., 2012, vol. 35, p. 73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bushov, Yu.V. and Svetlik, M.V., Neirofiziologiya: uchebnoe posobie (Neurophysiology: Study Guide), Tomsk: Tomsk Gos. Univ., 2021.

  53. Belova, A.N., Grygor’eva, V.N., Sushin, V.O., et al., Anatomical and functional features of corticospinal tracts and their role in restoration of motor functions after brain injury, Vestn. Vosstanov. Med., 2020, no. 1, p. 1.

Download references

Funding

The work was carried out a state assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Vigasina.

Ethics declarations

Ethics approval. All studies were carried out in accordance with the principles of biomedical ethics formulated in the Declaration of Helsinki of 1964 and its subsequent updates, and were approved by the local bioethical committee of the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences (Moscow), protocol no. 3 dated November 23, 2022.

Informed consent. Each participant in the study provided a voluntary written informed consent signed by him after explaining to him the potential risks and benefits, as well as the nature of the upcoming study.

Conflict of interest. The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigasina, K.D., Sharova, E.V., Bordyug, V.A. et al. EEG Functional Connectivity in Motor Tasks: Experience of Application of Graph Analysis. Hum Physiol 49, 453–463 (2023). https://doi.org/10.1134/S0362119723600182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119723600182

Keywords:

Navigation