Skip to main content
Log in

The Hemostasis System in Airline Passengers and Pilots

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

This review contains the results of the studies of the hemostasis system in airline passengers and crew members, as well as ground-based model experiments simulating the effect of specific flight factors. According to most researchers, flight factors shift the coagulation balance towards increasing the procoagulant potential. However, the occurrence of thrombotic conditions in passengers is associated with the individual presence of certain endogenous risk factors, such as age, constitution, diseases of the cardiovascular system and hereditary pathology of the hemostasis system, and some types of hormone therapy. Aircraft pilots whose flight time significantly exceeds that of passengers have described cases of thrombosis. No mention of cases of hemorrhagic conditions in civil aviation flight personnel has been found in the available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fedulova, G.A., Characteristics of the hemostasis system affected by factors of flight, Kosm. Biol. Aviakosm. Med., 1988, vol. 22, no. 3, p. 15.

    CAS  PubMed  Google Scholar 

  2. Schobersberger, W., Fries, D., Mittermayr, M., et al., Changes of biochemical markers and functional tests for clot formation during long-haul flights, Thromb. Res., 2003, vol. 108, no. 1, p. 19.

    Article  CAS  Google Scholar 

  3. Boccalon, H., Boneu, B., Emmerich, J., et al., Long-haul flights do not activate hemostasis in young healthy men, J. Thromb. Haemostasis, 2005, vol. 3, no. 7, p. 1539.

    Article  CAS  Google Scholar 

  4. Chandra, D., Parisini, E., and Mozaffarian, D., Meta-analysis: Travel and risk for venous thromboembolism, Ann. Inter. Med., 2009, vol. 151, no. 3, p. 180.

    Article  Google Scholar 

  5. Stricker, H., Clotting in the air, Lancet, 2006, vol. 367, no. 9513, p. 792.

    Article  PubMed  Google Scholar 

  6. Bartholomew, J.R., Schaffer, J.L., and McCormick, G.F., Air travel and venous thromboembolism: Minimizing the risk, Cleveland Clin. J. Med., 2011, vol. 78, no. 2, p. 111. https://doi.org/10.3949/ccjm.78a.10138

    Article  Google Scholar 

  7. Kuipers, S., Cannegieter, S.C., Middeldorp, S., et al., The absolute risk of venous thrombosis after air travel: A cohort study of 8755 employees of international organisations, PLoS Med., 2007, vol. 4, no. 9, p. 290.

    Article  Google Scholar 

  8. Schreijer, A.J., Cannegieter, S.C., Meijers, J.C., et al., Activation of coagulation system during air travel: A crossover study, Lancet, 2006, vol. 367, no. 9513, p. 832.

    Article  CAS  PubMed  Google Scholar 

  9. Schobersberger, W., Mittermayr, M., Innerhofer, P., et al., Coagulation changes and edema formation during long-distance bus travel, Blood Coagulation Fibrinolysis, 2004, vol. 15, no. 5, p. 419.

    Article  CAS  PubMed  Google Scholar 

  10. Beltrami, E. and Jesty, J., The role of membrane patch size and flow in regulating a proteolytic feedback threshold on a membrane: Possible application in blood coagulation, Math. Biosci., 2001, vol. 172, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  11. Deng, X., Wang, G., and Yang, Y., Experimental simulation of model platelet adhesion to a semi-permeable wall exposed to flow disturbance, Sci. Bull., 2003, vol. 48, no. 22, p. 2422.

    Article  Google Scholar 

  12. Diquelou, A., Dupouy, D., Gaspin, D., et al., Relationship between endothelial tissue factor and thrombogenesis under blood flow conditions, Thromb. Haemostasis, 1995, vol. 74, no. 2, p. 778.

    Article  CAS  Google Scholar 

  13. Shibeko, A.M., Karamzin, S.S., Butylin, A.A., et al., The review of contemporary ideas about the influence of flow rate on blood clotting, Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol., 2009, vol. 3, no. 4, p. 388. https://doi.org/10.1134/S1990747809040047

    Article  Google Scholar 

  14. Sanitary and Hygienic Assessment of Hazards, Danger, and Labor Intensity of Civil Aviation Pilots in Russia, Moscow: Ministerstvo Zdravookhraneniya, 1997.

  15. von Känel, R., Acute mental stress and hemostasis: When physiology becomes vascular harm, Thromb. Res., 2015, vol. 135, suppl. 1, p. S52.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Austin, A.W., Wissmann, T., and von Känel, R., Stress and hemostasis: An update, Semin. Thromb. Haemostasis, 2013, vol. 39, no. 8, p. 902.

    Article  CAS  Google Scholar 

  17. Bentur, O.S., Sarig, G., Brenner, B., and Jacob, G., Effects of acute stress on thrombosis, Semin. Thromb. Haemostasis, 2018, vol. 44, no. 7, p. 662.

    Article  CAS  Google Scholar 

  18. Shitnikova, A.S., Trombotsitarnyi gemostaz (Platelet Hemostasis), St. Petersburg: St. Petersburg Gos. Med. Univ., 2000.

  19. Zubairov, D.M., Molekulyarnye osnovy svertyvaniya krovi i tromboobrazovaniya (Molecular Basis of Blood Coagulation and Thrombosis), Kazan: FEN, 2000.

  20. Eggers, A.E., Factor XII (Hageman factor) is a missing link between stress and hypercoagulability and plays an important role in the pathophysiology of ischemic stroke, Med. Hypotheses, 2006, vol. 67, no. 5, p. 1065.

    Article  CAS  PubMed  Google Scholar 

  21. von Känel, R. and Dimsdale, J.E., Effects of sympathetic activation by adrenergic infusions on hemostasis in vivo, Eur. J. Haematol., 2000, vol. 65, no. 6, p. 357.

    Article  PubMed  Google Scholar 

  22. Nodova, E.S., Effect of flight factors on changes in blood coagulation and anticoagulation indices in crew members, Kosm. Biol. Aviakosm. Med., 1975, vol. 9, no. 3, p. 56.

    CAS  PubMed  Google Scholar 

  23. Biondi, G., Farrace, S., Mameli, G., and Marongiu, F., Is there a hypercoagulable state in military fighter pilots? Aviat. Space Environ. Med., 1996, vol. 67, no. 6, p. 568.

    CAS  PubMed  Google Scholar 

  24. Seigneur, M., Dufourcq, P., Conri, C., et al., Plasma thrombomodulin: New approach of endothelium damage, Int. Angiol., 1993, vol. 12, no. 4, p. 355.

    CAS  PubMed  Google Scholar 

  25. Remková, A., Kovácová, E., Príkazská, M., and Kratochvíl'ová, H., Thrombomodulin as a marker of endothelium damage in some clinical conditions, Eur. J. Intern. Med., 2000, vol. 11, no. 2, p. 79.

    Article  PubMed  Google Scholar 

  26. Subbotina, L.A., Stress effect on the blood aggregate state, Aviakosm. Ekol. Med., 2008, vol. 42, no. 3, p. 34.

    CAS  Google Scholar 

  27. Mannucci, P.M., Gringeri, A., Peyvandi, F., et al., Short-term exposure to high altitude causes coagulation activation and inhibits fibrinolysis, Thromb. Haemostasis, 2002, vol. 87, no. 2, p. 342.

    Article  CAS  Google Scholar 

  28. Hefti, J.P., Risch, L., Hefti, U., et al., Changes of coagulation parameters during high altitude expedition, Swiss Med. Weekly, 2010, vol. 140, nos. 7—8, p. 111.

    CAS  Google Scholar 

  29. Peng, H.T. and Rhind, S.G., Thromboelastographic study of psychophysiological stress: A review, Clin. Appl. Thromb. Haemostasis, 2015, vol. 21, no. 6, p. 497.

    Article  CAS  Google Scholar 

  30. Toff, W.D., Jones, C.I., Ford, I., et al., Effect of hypobaric hypoxia, simulating conditions during long-haul air travel, on coagulation, fibrinolysis, platelet function, and endothelial activation, JAMA, 2006, vol. 295, no. 19, p. 2251.

    Article  CAS  PubMed  Google Scholar 

  31. Mäntysaari, M., Joutsi-Korhonen, L., Siimes, M.A., et al., Unaltered blood coagulation and platelet function in healthy subjects exposed to acute hypoxia Aviat. Space Environ. Med., 2011, vol. 82, no. 7, p. 699.

    Article  PubMed  Google Scholar 

  32. Schiffer, T., Strüder, H.K., Predel, H.G., and Hollmann, W., Effects of mild leg exercise in a seated position on haemostatic parameters under normobaric hypoxic conditions, Can. J. Appl. Physiol., 2005, vol. 30, no. 6, p. 708.

    Article  CAS  PubMed  Google Scholar 

  33. Crosby, A., Talbot, N.P., Harrison, P., et al., Relation between acute hypoxia and activation of coagulation in human beings, Lancet, 2003, vol. 361, no. 9376, p. 2207.

    Article  CAS  PubMed  Google Scholar 

  34. Bendz, B., Rostrup, M., Sevre, K., et al., Association between acute hypobaric hypoxia and activation of coagulation in human beings, Lancet, 2000, vol. 356, no. 9242, p. 1657.

    Article  CAS  PubMed  Google Scholar 

  35. Schobersberger, W., Schobersberger, B., Mitter-mayr, M., et al., Air travel, hypobaric hypoxia, and prothrombotic changes, JAMA, 2006, vol. 296, no. 19, p. 2313.

    Article  CAS  PubMed  Google Scholar 

  36. Şabanoğlu, C., The secret enemy during a flight: Economy class syndrome, Anatolian J. Cardiol., 2021, vol. 25, suppl. 1, p. 13.

    Article  Google Scholar 

  37. Greenberg, D.L. and Davie, E.W., Blood coagulation factors: Their complementary DNAs, genes and expression, in Hemostasis and Thrombosis: Basic Principles and Clinical Practice, New York, NY: Lippincott, 2001, 4th ed., p. 21.

    Google Scholar 

  38. Kuipers, S., Venemans-Jellema, A., Cannegieter, S.C., et al., The incidence of venous thromboembolism in commercial airline pilots: A cohort study of 2630 pilots, J. Thromb. Haemostasis, 2014, vol. 12, no. 8, p. 1260.

    Article  CAS  Google Scholar 

  39. Bukhtiyarov, I.V., Zibarev, E.V., and Betts, K.V., Epidemiological investigation based on analysis of mortality among civil aviation pilots in the Russian Federation, Aviakosm. Ekol. Med., 2022, vol. 56, no. 4, p. 83.

    Google Scholar 

  40. Venemans-Jellema, A., Schreijer, A.J., Le Cessie, S., et al., No effect of isolated long-term supine immobilization or profound prolonged hypoxia on blood coagulation, J. Thromb. Haemostasis, 2014, vol. 12, no. 6, p. 902.

    Article  CAS  Google Scholar 

  41. Schobersberger, W., Mittermayr, M., Fries, D., et al., Changes in blood coagulation of arm and leg veins during a simulated long-haul flight, Thromb. Res., 2007, vol. 119, no. 3, p. 293.

    Article  CAS  PubMed  Google Scholar 

  42. Schreijer, A.J., Cannegieter, S.C., Caramella, M., et al., Fluid loss does not explain coagulation activation during air travel, Thromb. Haemostasis, 2008, vol. 99, no. 6, p. 1053.

    Article  CAS  Google Scholar 

  43. Kilic, B. and Soran, S., Awareness level of airline pilots on flight-associated venous thromboembolism, Aerosp. Med. Hum. Perform., 2020, vol. 91, no. 4, p. 343.

    Article  PubMed  Google Scholar 

  44. Shrivastava, J.K., Deep vein thrombosis in commercial pilot: A case report, Indian J. Aerosp. Med., 2003, vol. 47, no. 2, p. 17.

    Google Scholar 

  45. Tsokolov, A.B., Ilyin, I.B., Krylov, V.A., et al., Large white thrombi formation in the inferior vena cava and right atrium in a pilot of short-haul aircraft, Russ. Med. Zh., 2019, no. 8(II), p. 108.

Download references

Funding

The study was carried out within the theme of the Russian Academy of Sciences No. 65.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kuzichkin.

Ethics declarations

Ethics approval. Not applicable because this is a review article.

Informed consent. Not applicable because this is a review article.

Conflict of interest. The authors of this work declare that they have no conflicts of interest. Informed consent. Not applicable because this is a review article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzichkin, D.S., Betts, K.V. The Hemostasis System in Airline Passengers and Pilots. Hum Physiol 49, 573–578 (2023). https://doi.org/10.1134/S0362119723600133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119723600133

Keywords:

Navigation