Skip to main content
Log in

Regulation of Gene Expression by the MYC Transcription Factor Network During Exercise

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The results obtained in recent years on the numerous functions of the MYC protein convincingly indicate that MYC overexpression induced by physical activity (PA) occurs at the transcriptional and epigenetic levels with the participation of low molecular weight metabolites formed during the enhancement of intermediate metabolism. The current hypothesis proposes that the MYC network of transcription factors may account substantially for the exercise-induced adaptive changes in muscle and other vital organs through changes in lactate dynamics. This review presents the MYC transcription factor network that is involved in cell cycle regulation, growth, proliferation, and cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Carroll, P.A., Freie, B.W., Mathsearaja, H., and Eisenman, R.N., The MYC transcription factor network: balancing metabolism, proliferation, and oncogenesis, Front. Med., 2018, vol. 12, no. 4, p. 412.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Conacci-Sorrell, M., McFerrin, L., and Eiesen-man, R.N., An overview of MYC and its interactome, Cold Spring Harb. Perspect., 2014, vol. 4, no. 1, p. a014357.

    Article  Google Scholar 

  3. Thomas, L.R., Wang, Q., Grieb, B.C., et al., Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC, Mol. Cell, 2015, vol. 58, no. 3, p. 440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kotekar, A., Singh, A.K., and Devaiah, B.N., BRD4 and MYC: power couple in transcription and disease, FEBS J., 2022. https://doi.org/10.1111/febs.16580

  5. Devaiah, B.N., Mu, J., Akman, B., et al., MYC protein stability is negatively regulated by BRD4, Proc. Natl. Acad. Sci. U.S.A., 2020, vol. 117, no. 24, p. 13457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Imran, A., Moyer, B.S., Kalina, D., et al., Convergent alterations of protein hub produce divergent effects within a binding site, ACS Chem. Biol., 2022, vol. 17, no. 6, p. 1586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farrell, A.S. and Sears, R.S., MYC degradation, Cold Spring Harb. Perspect., 2014, vol. 4, no. 3, p. a014365.

    Article  Google Scholar 

  8. Chen, Y., Sun, X.X., Sears, R.C., and Dai, M.S., Writing and erasing MYC ubiquitination and SUMOylation, Genes Dis., 2019, vol. 6, no. 4, p. 359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Das, S.K., Lewis, B.A., and Levens, D., MYC: a complex problem, Trends Cell. Biol., 2022, vol. 33, no. 3, p. 235.

    Article  PubMed  Google Scholar 

  10. Greib, B.C. and Eischen, C.M., MTBP and MYC: a dynamic duo in proliferation, cancer, and aging, Biology (Basel). 2022, vol. 11, no. 6, p. 881.

    Article  Google Scholar 

  11. Endres, T., Solvie, D., Heidelberger, J.B., et al., Ubiquitylation of MYC couples transcription elongation with double-strand break repair at active promoters, Mol. Cell, 2021, vol. 81, no. 4, p. 830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Das, S.K., Kuzin, V., Cameron, D.P., et al., MYC assembles and stimulates topoisomerases 1 and 2 in a topoisome, Mol. Cell, 2022, vol. 82, no. 1, p. 140.

    Article  CAS  PubMed  Google Scholar 

  13. Nie, Z., Guo, C., Das, S.K., et al., Dissecting transcriptional amplification by MYC, eLife, 2020, vol. 9. e52483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patange, S., Ball, D.A., Wan, Y., et al., MYC amplifies gene expression through global changes in transcription factor dynamics, Cell Rep., 2022, vol. 38, no. 4, p. 110292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo, W., Chen, J., Li, L., et al., c-MYC inhibits myoblast differentiation and promotes myoblast proliferation and muscle fiber hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs, Cell Death Differ., 2019, vol. 26, no. 3, p. 426.

    Article  CAS  PubMed  Google Scholar 

  16. Gohil, K. and Brooks, G.A., Exercise tames the wild side of the MYC network: a hypothesis, Am. J. Physiol.: Endocrinol. Metab., 2012, vol. 303, no. 1, p. E18.

    CAS  PubMed  Google Scholar 

  17. Jolma, A., Yin, Y., Nitta, K.R., et al., DNA-dependent formation of transcription factor pairs alters their binding specificity, Nature, 2015, vol. 527, no. 7578, p. 384.

    Article  CAS  PubMed  Google Scholar 

  18. Morgunova, E. and Taipale, J., Structural perspective of cooperative transcription factor binding, Curr. Open Struct. Biol., 2017, vol. 47, p. 1.

    Article  CAS  Google Scholar 

  19. Brooks, G.A., Arevalo, J.A., Osmond, A.D., et al., Lactate in contemporary biology: a phoenix risen, J. Physiol., 2022, vol. 600, no. 5, p. 1229.

    Article  CAS  PubMed  Google Scholar 

  20. Brooks, G.A., Curl, C.C., Leija, R.G., et al., Tracing the lactate shuttle to the mitochondrial reticulum, Exp. Mol. Med., 2022, vol. 54, no. 9, p. 1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xue, X., Liu, B., Hu, J., et al., The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule, Nutr. Metab. (London), 2022, vol. 19, no. 1, p. 52.

    Article  CAS  Google Scholar 

  22. Von Walden, F., Rea, M., Mobley, C.B., et al., The myonuclear, DNA methylome in response to an acute hypertrophic stimulus, Epigenetics, 2020, vol. 15, no. 11, p. 1151.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mori, T., Ato, S., Knudsen, J.R., et al., c-MYC overexpression increases ribosome biogenesis and protein synthesis independent of mTORC1 activation in mouse skeletal muscle, Am. J. Physiol.: Endocrinol. Metab., 2021, vol. 321, no. 4, p. E551.

    CAS  PubMed  Google Scholar 

  24. Murach, K.A., Liu, Z., Jude, B., et al., Multi-transcriptome analysis following an acute skeletal muscle growth stimulus yields tools for discerning global and MYC regulatory networks, J. Biol. Chem., 2022, vol. 298, no. 11, p. 102515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Astratenkova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.

CONTRIBUTION OF AUTHORS TO THE PUBLICATION

I.V. Astratenkova, V.A. Rogozkin—collection and analysis of literary sources, N.D. Golberg—editing and technical design of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astratenkova, I.V., Golberg, N.D. & Rogozkin, V.A. Regulation of Gene Expression by the MYC Transcription Factor Network During Exercise. Hum Physiol 49, 444–452 (2023). https://doi.org/10.1134/S036211972360011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211972360011X

Keywords:

Navigation