Skip to main content
Log in

Cognitive Functions of the Brain: A Review of Research in Weightlessness

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review is dedicated to the role of gravity in the implementation of human cognitive functions. The weightlessness on various aspects of cognitive activity is considered, such as the choice of a vertical, the formation of a reference system, including the time coordinate, the recognition influence of the symmetry of complex shapes, the processes of memorizing and recognizing images, and orientation in three-dimensional labyrinths. It is described how the EEG activity of the brain in response to visual stimuli changes in weightlessness. It is shown that in weightlessness there are not only changes in the work of reflex mechanisms, but also restructuring at the level of the cognitive system, in particular, “reprogramming” of sensorimotor systems, and the development of new skills for the functioning of the brain in changed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Clément, G., Gurfinkel, V.S., Lestienne, F., et al., Adaptation of postural control to weightlessness, Exp. Brain Res., 1984, vol. 57, no. 1, p. 61.

    Article  PubMed  Google Scholar 

  2. Clément, G., Gurfinkel, V.S., Lestienne, F., et al., Changes in posture during transient perturbations in microgravity, Aviat. Space Environ. Med., 1985, vol. 56, no. 7, p. 666.

    PubMed  Google Scholar 

  3. Liddell, E. and Sherrington, C., Reflexes in response to stretch (myotatic reflexes), Proc. R. Soc. London, Ser. B, 1924, vol. 96, no. 675, p. 212.

    Article  Google Scholar 

  4. Magnus, R., Körperstellung: experimentell-physiologische Untersuchungen über die Einzelnen bei der Körperstellung in Tätigkeit, Berlin: Springer-Verlag, 1924.

    Book  Google Scholar 

  5. Gurfinkel, V.S. and Levik, Yu.S., Sensory complexes and sensorimotor integration, Fiziol. Chel., 1979, vol. 5, no. 3, p. 269.

    CAS  Google Scholar 

  6. Levik, Y.S., Motor control based on the internal representation system on the earth and in space, Hum. Physiol., 2021, vol. 47, no. 3, p. 335. https://doi.org/10.1134/S0362119721030099

    Article  Google Scholar 

  7. Levik, Y.S., Research in space and new concepts in the physiology of movements, Aviakosm. Ekol. Med., 2020, vol. 54, no. 6, p. 80.

    Google Scholar 

  8. Clément, G., Vieville, T., Lestienne, F., and Berthoz, A., Modification of gain asymmetry and beating field of vertical optokinetic after-nystagmus in microgravity, Neurosci. Lett., 1986, vol. 63, no. 3, p. 271.

    Article  PubMed  Google Scholar 

  9. Thornton, W.E., Uri, J.J., Moore, T., and Pool, S., Studies of the horizontal vestibulo-ocular reflex in spaceflight, Arch. Otolaryngol. Head Neck Surg., 1989, vol. 115, no. 8, p. 943.

    Article  CAS  PubMed  Google Scholar 

  10. André-Deshays, C., Israël, I., Charade, O., et al., Gaze control in microgravity: 1. Saccades, pursuit, eye-head coordination, J. Vestibular Res., 1993, vol. 3, no. 3, p. 331.

    Article  Google Scholar 

  11. Israël, I., André-Deshays, C., Charade, O., et al., Gaze control in microgravity: 2. Sequences of saccades toward memorized visual targets, J. Vestibular Res., 1993, vol. 3, no. 3, p. 345.

    Article  Google Scholar 

  12. Clément, G., Popov, K.E., and Berthoz, A., Effect of prolong weightlessness on horizontal and vertical optokinetic nystagmus in microgravity, Exp. Brain Res., 1993, vol. 94, no. 3, p. 456.

    Article  PubMed  Google Scholar 

  13. Gurfinkel, V.S., Lestienne, F., Levik, Yu.S., and Popov, K.E., Egocentric references and human spatial orientation in microgravity: I. Perception of complex tactile stimuli, Exp. Brain Res., 1993, vol. 95, no. 2, p. 339.

    Article  CAS  PubMed  Google Scholar 

  14. Gurfinkel, V.S., Levik, Yu.S., Popov, K.E., et al., Egocentric references and human spatial orientation in microgravity: II. Body-centered coordinates in the task of drawing ellipses with prescribed orientation, Exp. Brain Res., 1993, vol. 95, no. 2, p. 343.

    Article  CAS  PubMed  Google Scholar 

  15. Papaxanthis, C., Pozzo, T., Popov, K.E., and McIntyre, J., Hand trajectories of vertical arm movement in one-G environments, Exp. Brain Res., 1998, vol. 120, no. 4, p. 496.

    Article  CAS  PubMed  Google Scholar 

  16. Lipshits, M.I., Gurfinkel’, E.V., Matsakis, I., and Lestienne, F., Influence of weightlessness on sensorimotor interaction during operator activity: proprioceptive feedbacks, Aviakosm. Ekol. Med., 1993, vol. 27, no. 1, p. 26.

    CAS  Google Scholar 

  17. Lipshits, M.I., Makintair, D., and Polyakov, A.V., The influence of weightlessness on the reproduction of a particular position in various operating modes of the handle, in Problemy neirokibernetiki (Problems of Neurocybernetics), Rostov-on-Don, 1999, p. 96.

  18. Lipshits, M.I., Gurfinkel’, E.V., Matsakis, I., and Lestienne, F., Influence of weightlessness on sensorimotor interaction during operator activity: visual feedback and latent time of motor response, Aviakosm. Ekol. Med., 1993, vol. 27, no. 1, p. 22.

    CAS  Google Scholar 

  19. Lipshits, M. and McIntyre, J., Haptic perception in weightlessness: a sense of force or effort? Proceedings of 12th Man in Space Symposium, June 8–13, 1997, Abstracts of Papers, Washington DC, 1997, p. 36.

  20. Popov, K.E., Roll’, R., Lipshits, M.I., et al., Errors in targeted hand movements during orbital flight, Aviakosm. Ekol. Med., 1999, vol. 33, no. 2, p. 3.

    CAS  Google Scholar 

  21. Semjen, A., Leone, G., and Lipshits, M., Motor timing under microgravity, Acta Astronaut., 1998, vol. 42, nos. 1—8, p. 303.

  22. Semjen, A., Leone, G., and Lipshits, M., Temporal control and motor control: two functional modules which may be influenced differentially during microgravity, Hum. Mov. Sci., 1998, vol. 17, no. 1, p. 77.

    Article  CAS  PubMed  Google Scholar 

  23. Leone, G., Lipshits, M., McIntyre, J., and Gurfinkel, V., Independence of bilateral symmetry detection from a gravitational reference frame, Spat. Vision, 1995, vol. 9, no. 1, p. 127.

    Article  CAS  Google Scholar 

  24. Leone, G., De Schonen, S., and Lipshits, M., Prolonged weightlessness, reference frame and visual symmetry detection, Acta Astronaut., 1998, vol. 42, nos. 1—8, p. 281.

  25. De Schonen, S., Leone, G., and Lipshits, M., The face inversion effect in microgravity: is gravity used as a spatial reference for complex object? Acta Astronaut., 1998, vol. 42, nos. 1—8, p. 287.

  26. Manzey, J., Lorenz, B., and Polyakov, V., Human performance during a 14 months space mission, 12th Man in Space Symposium. June 8–13, 1997, Abstract volume, Washington, 1997, p. 130.

  27. Leone, G., Lipshits, M., Gurfinkel, V., and Berthoz, A., Is there an effect of weightlessness on mental rotation of three-dimentional objects? Cognit. Brain Res., 1995, vol. 2, no. 4, p. 255.

    Article  CAS  Google Scholar 

  28. Lipshits, M.I., Leone, G., Gurfinkel’, V.S., and Berthoz, A., The influence of weightlessness on the inertia of mental tracking of moving objects, Aviakosm. Ekol. Med., 1995, vol. 29, no. 5, p. 20.

    CAS  Google Scholar 

  29. Lipshits, M., McIntyre, J., Zaoui, M., et al., Does gravity play an essential role in the asymmetrical visual perception of vertical and horizontal line length? Acta Astronaut., 2001, vol. 49, nos. 3—10, p. 123.

  30. Lipshits, M. and McIntyre, J., Gravity affects the preferred vertical and horizontal in visual perception of orientation, NeuroReport, 1999, vol. 10, no. 5, p. 1085.

    Article  CAS  PubMed  Google Scholar 

  31. Lipshits, M., Bengoetxea, A., Cheron, G., and McIntyre, J., Two reference frames for visual perception in two gravity conditions, Perception, 2005, vol. 34, no. 5, p. 545.

    Article  PubMed  Google Scholar 

  32. Lipshits, M. and McIntyre, J., Role of gravitation in solving a haptic comparison problem, Hum. Physiol., 2007, vol. 33, no. 1, p. 120. https://doi.org/10.1134/S0362119707010197

    Article  Google Scholar 

  33. McIntyre, J., Lipshits, M., Gurfinkel, V., and Berthoz, A., Internal reference frame for visual-haptic coordination, Eur. J. Neurosci., 2000, vol. 12, suppl. 11, p. 151.

    Google Scholar 

  34. McIntyre, J. and Lipshits, M., Central processes amplify and transform anisotropies of the visual system in a test of visual-haptic coordination, J. Neurosci., 2008, vol. 28, no. 5, p. 1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tolman, E.C., Cognitive maps in rat and man, Psychol. Rev., 1948, vol. 55, no. 4, p. 189.

    Article  CAS  PubMed  Google Scholar 

  36. Vidal, M., McIntyre, J., Berthoz, A., and Lipshits, M., Gravity and spatial orientation in virtual 3d-mazes, J. Vestibular Res., 2003, vol. 13, nos. 4—6, p. 273.

    Article  Google Scholar 

  37. De Saedeleer, C., Vidal, M., Lipshits, M., et al., Weightlessness alters up/down asymmetries in the perception of self-motion, Exp. Brain Res., 2013, vol. 226, no. 1, p. 95.

    Article  PubMed  Google Scholar 

  38. Cohen, M.M. and Larsen, C.A., Human spatial orientation in the pitch dimension, Percep. Psychophys., 1974, vol. 16, no. 3, p. 508.

    Article  Google Scholar 

  39. Young, L.R., Oman, C.M., and Dichgans, J.M., Influence of head orientation on visually induced pitch and roll sensation, Aviat. Space Environ. Med., 1975, vol. 46, no. 3, p. 264.

    CAS  PubMed  Google Scholar 

  40. Cheron, G., Leroy, A., De Saedeleer, C., et al., Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction, Brain Res., 2006, vol. 1121, no. 1, p. 104.

    Article  CAS  PubMed  Google Scholar 

  41. Cheron, G., Leroy, A., Bengoetxea, A., et al., Les neurosciences spatiales: l’électroencéphalographie dans la navigation virtuelle, Sci. Connect., 2006, no. 10, p. 25.

  42. Cheron, G., Leroy, A., Palmero-Soler, E., et al., Gravity influences top-down signals in visual processing, PLoS One, 2014, vol. 9, no. 1. e82371

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cebolla, A.M., Petieau, M., Palmero-Soler, E., and Cheron, G., Brain potential responses involved in decision-making in weightlessness, Sci. Rep., 2022, vol. 12, no. 1, p. 12992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cebolla, A.M., Petieau, M., Dan, B., et al., Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness, Sci. Rep., 2016, vol. 6, p. 37824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takács, E., Barkaszi, I., Czigler, I., et al., Persistent deterioration of visuospatial performance in spaceflight, Sci. Rep., 2021, vol. 11, no. 1, p. 9590.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Morfoisse, T., Herrera, A.G., Angelini, L., et al., Does gravity shape internal representations of space for human 3D perception? bioRxiv, 2020. https://doi.org/10.1101/2020.03.23.003061

  47. Koller, D.P., Kasanin, V., Flynn-Evans, E.E., et al., Altered sleep spindles and slow waves during space shuttle missions, NPJ Microgravity, 2021, vol. 7, no. 1, p. 48.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Demertzi, A., Van Ombergen, A., Tomilovskaya, E., et al., Cortical reorganization in an astronaut’s brain after long-duration spaceflight, Brain Struct. Funct., 2016, vol. 221, no. 5, p. 2873.

    Article  PubMed  Google Scholar 

  49. Jillings, S., Van Ombergen, A., Tomilovskaya, E., et al., Macro- and microstructural changes in cosmonauts' brains after long-duration spaceflight, Sci. Adv., 2020, vol. 6, no. 36, p. 9488.

    Article  Google Scholar 

  50. Hupfeld, K.E., McGregor, H.R., Lee, J.K., et al., Alzheimer’s disease neuroimaging initiative: the impact of 6 and 12 months in space on human brain structure and intracranial fluid shifts, Cereb. Cortex Commun., 2020, vol. 1, no. 1, p. tgaa023.

  51. Van Ombergen, A., Demertzi, A., Tomilovskaya, E., et al., The effect of spaceflight and microgravity on the human brain, J. Neurol., 2017, vol. 264, suppl. 1, p. 18.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Arone, A., Ivaldi, T., Loganovsky, K., et al., The burden of space exploration on the mental health of astronauts: a narrative review, Clin. Neuropsychiatry, 2021, vol. 18, no. 5, p. 237.

    PubMed  PubMed Central  Google Scholar 

  53. Roma, P.G., Schneiderman, J.S., Schorn, J.M., et al., Assessment of spaceflight medical conditions' and treatments' potential impacts on behavioral health and performance, Life Sci. Space Res. (Amsterdam), 2021, vol. 30, p. 72.

    Article  Google Scholar 

  54. Delle Monache, S., Indovina, I., Zago, M., et al., Watching the effects of gravity: vestibular cortex and the neural representation of “visual” gravity, Front. Integr. Neurosci., 2021, vol. 15, p. 793634.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kohn, F.P.M. and Ritzmann, R., Gravity and neuronal adaptation, in vitro and in vivo-from neuronal cells up to neuromuscular responses: a first model, Eur. Biophys. J., 2018, vol. 47, no. 2, p. 97.

    Article  PubMed  Google Scholar 

  56. Tays, G.D., Hupfeld, K.E., McGregor, H.R., et al., The effects of long duration spaceflight on sensorimotor control and cognition, Front. Neural Circuits, 2021, vol. 15, p. 723504.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was carried out within the state task of the Ministry of Science and Higher Education of the Russian Federation (subject no. 0061-2019-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Levik.

Ethics declarations

The authors declare the absence of an obvious and potential conflict of interest related to the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipshits, M.I., Levik, Y.S. Cognitive Functions of the Brain: A Review of Research in Weightlessness. Hum Physiol 49, 165–175 (2023). https://doi.org/10.1134/S0362119722700219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722700219

Keywords:

Navigation