Skip to main content
Log in

Neurofunctional Organization of Working Memory for the Basic Characteristics of Visual Space in Males and Females

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

In a group of 38 subjects (19 males and 19 females), gender differences were found in the neural mechanisms for comparing the orientation characteristics of the visual space in a working memory (WM) task. In males, greater sensitivity of the amplitude of early occipitotemporal negativity of N150 to match/mismatch between the current and stored orientations in comparison with females indicates effective early detection of orientation changes. The higher amplitude of the P200 component of the occipitotemporal event-related potentials and central positivity of 400–500 ms in males compared to females is considered an indicator of a higher level of selective attention to orientations and the potential for retaining in memory more information about the spatial characteristics of the environment. A statistically significant correlation between the reaction time of the WM task execution and assessments of navigational behavior strategies was established in the study according to the questionnaires. It is suggested that effective visual-spatial orientation WM is one of the important biological factors underlying a more successful navigation strategy that takes into account global spatial references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Cahill, L., Why sex matters for neuroscience, Nat. Rev. Neurosci., 2006, vol. 7, no. 6, p. 477.

  2. Voyer, D., Voyer, S.D., and Saint-Aubin, J., Sex differences in visual-spatial working memory: a meta-analysis, Psychon. Bull. Rev., 2017, vol. 24, no. 2, p. 307.

    Article  PubMed  Google Scholar 

  3. Shaqiri, A., Roinishvili, M., Grzeczkowski, L., et al., Sex-related differences in vision are heterogeneous, Sci. Rep., 2018, vol. 8, no. 1, p. 7521.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Voyer, D., Voyer, S., and Bryden, M.P., Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables, Psychol. Bull., 1995, vol. 117, no. 2, p. 250.

    Article  CAS  PubMed  Google Scholar 

  5. Galea, L.A. and Kimura, D., Sex differences in route-learning, Pers. Individ. Dif., 1993, vol. 14, no. 1, p. 53.

    Article  Google Scholar 

  6. Moffat, S.D., Hampson, E., and Hatzipantelis, M., Navigation in a virtual maze: sex differences and correlation with psychometric measures of spatial ability in humans, Evol. Hum. Behav., 1998, vol. 19, p. 73.

    Article  Google Scholar 

  7. Christie, G.J., Cook, C.M., Ward, B.J., et al., Mental rotational ability is correlated with spatial but not verbal working memory performance and P300 amplitude in males, PLoS One, 2013, vol. 8, no. 2. e57390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krylova, M.A., Izyurov, I.V., Gerasimenko, N.Yu., et al., The modeling of human visual ERPs sources in the task of line orientation identification, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2015, vol. 65, no. 6, p. 685.

    CAS  Google Scholar 

  9. Mikhailova, E.S., Gerasimenko, N.Yu., Krylova, M.A., et al., Mechanisms of orientation sensitivity of human visual system: II. Neural patterns of early processing of information about line orientation, Hum. Physiol., 2015, vol. 41, no. 3, p. 229.

    Article  Google Scholar 

  10. Mikhailova, E.S., Gerasimenko, N.Yu., and Kushnir, A.B., Psychophysical and neurophysiological characteristics of the assessment of tilted orientations in men and women, Neurosci. Behav. Physiol., 2021, vol. 51, no. 6, p. 820. https://doi.org/10.1007/s11055-021-01139-6

    Article  Google Scholar 

  11. Barkley, C.L. and Jacobs, L.F., Sex and species differences in spatial memory in food-storing kangaroo rats, Anim. Behav., 2007, vol. 73, no. 2, p. 321.

    Article  Google Scholar 

  12. Gaulin, S.J.C. and Fitzgerald, R.W., Sex-differences in spatial ability—an evolutionary hypothesis and test, Am. Nat., 1986, vol. 127, p. 74.

    Article  Google Scholar 

  13. Langley, C.M., Spatial memory in the desert kangaroo rat (Dipodomys deserti), J. Comp. Psychol., 1994, vol. 108, no. 1, p. 3.

    Article  CAS  PubMed  Google Scholar 

  14. Williams, C.L., Barnett, A.M., and Meck, W.H., Organizational effects of early gonadal secretions on sexual differentiation in spatial memory, Behav. Neurosci., 1990, vol. 104, no. 1, p. 84.

    Article  CAS  PubMed  Google Scholar 

  15. Sandstrom, N.J., Kaufman, J., and Huettel, S.A., Males and females use different distal cues in a virtual environment navigation task, Brain Res. Cognit. Brain Res., 1998, vol. 6, no. 4, p. 351.

    Article  CAS  Google Scholar 

  16. Jones, C.M. and Healy, S.D., Differences in cue use and spatial memory in men and women, Proc. R. Soc. London, Ser. B, 2006, vol. 273, no. 1598, p. 2241.

    Google Scholar 

  17. Kelly, D.M. and Bischof, W.F., Reorienting in images of a three-dimensional environment, J. Exp. Psychol. Hum. Percept. Perform., 2005, vol. 31, no. 6, p. 1391.

    Article  PubMed  Google Scholar 

  18. Jacobs, L.F. and Schenk, F., Unpacking the cognitive map: the parallel map theory of hippocampal function, Psychol. Rev., 2003, vol. 110, no. 2, p. 285.

    Article  PubMed  Google Scholar 

  19. Kemp, A. and Manahan-Vaughan, D., The hippocampal CA1 region and dentate gyrus differentiate between environmental and spatial feature encoding through long-term depression, Cereb. Cortex, 2008, vol. 18, no. 4, p. 968.

    Article  PubMed  Google Scholar 

  20. Chai, X.J. and Jacobs, L.F., Sex differences in directional cue use in a virtual landscape, Behav. Neurosci., 2009, vol. 123, no. 2, p. 276.

    Article  PubMed  Google Scholar 

  21. Lejbak, L., Crossley, M., and Vrbancic, M., A male advantage for spatial and object but not verbal working memory using the n-back task, Brain Cognit., 2011, vol. 76, no. 1, p. 191.

    Article  Google Scholar 

  22. Lawton, C.A. and Kallai, J., Gender differences in wayfinding strategies and anxiety about wayfinding: a cross-cultural comparison, Sex Roles, 2002, vol. 47, nos. 9–10, p. 389.

    Article  Google Scholar 

  23. Chen, C.-C., Kuo, J.-C., and Wang, W.-J., Distinguishing the visual working memory training and practice effects by the effective connectivity during n-back tasks: a DCM of ERP study, Front. Behav. Neurosci., 2019, vol. 13, p. 84.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pasternak, T. and Greenlee, M.W., Working memory in primate sensory systems, Nat. Rev., Neurosci., 2005, vol. 6, no. 2, p. 97.

    Article  CAS  PubMed  Google Scholar 

  25. Postle, B.R., Working memory as an emergent property of the mind and brain, Neuroscience, 2006, vol. 139, no. 1, p. 23.

    Article  CAS  PubMed  Google Scholar 

  26. Agam, Y. and Sekuler, R., Interactions between working memory and visual perception: an ERP/EEG study, Neuroimage, 2007, vol. 36, no. 3, p. 933.

    Article  PubMed  Google Scholar 

  27. Mikhailova, E.S., Gerasimenko, N.Yu., and Slavutskaya, A.V., Sensory mechanisms in early orientation discrimination in a model of visual working memory, Neurosci. Behav. Physiol., 2020, vol. 50, no. 6, p. 700.

    Article  Google Scholar 

  28. Gur, R.C., Alsop, D., Glahn, D., et al., An fMRI study of sex differences in regional activation to a verbal and a spatial task, Brain Lang., 2000, vol. 74, no. 2, p. 157.

    Article  CAS  PubMed  Google Scholar 

  29. Lefebvre, C.D., Marchand, Y., Eskes, G.A., et al., Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task, Clin. Neurophysiol., 2005, vol. 116, no. 7, p. 1665.

    Article  PubMed  Google Scholar 

  30. Wang, A.L., Mouraux, A., Liang, M., et al., The enhancement of the N1 wave elicited by sensory stimuli presented at very short inter-stimulus intervals is a general feature across sensory systems, PLoS One, 2008, vol. 3, no. 12. e3929

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lenartowicz, A., Escobedo-Quiroz, R., and Cohen, J.D., Updating of context in working memory: an event-related potential study, Cognit. Affect. Behav. Neurosci., 2010, vol. 10, no. 2, p. 298.

    Article  Google Scholar 

  32. Philips, S. and Takeda, Y., An EEG/ERP study of efficient versus inefficient visual search, Proceedings of the Annual Meeting of the Cognitive Science Society, 2009, p. 383.

  33. Coenen, A., Modelling of auditory evoked potentials of human sleep—wake states, Int. J. Psychophysiol., 2012, vol. 85, no. 1, p. 37.

    Article  PubMed  Google Scholar 

  34. Zhang, X., Yang, S., and Jiang, M., Rapid implicit extraction of abstract orthographic patterns of Chinese characters during reading, PLoS One, 2020, vol. 15, no. 2. e0229590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Freunberger, R., Klimesch, W., Doppelmayr, M., et al., Visual P2 component is related to theta phase-locking, Neurosci. Lett., 2007, vol. 426, no. 3, p. 181.

    Article  CAS  PubMed  Google Scholar 

  36. Cepeda-Freyre, H.A., Garcia-Aguilar, G., Eguibar, J.R., et al., Brain processing of complex geometric forms in a visual memory task increases P2 amplitude, Brain Sci., 2020, vol. 10, no. 2, p. 114.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Föcker, J., Mortazavi, M., Khoe, W., et al., Neural correlates of enhanced visual attentional control in action video game players: an event-related potential study, J. Cognit. Neurosci., 2019, vol. 31, no. 3, p. 377.

    Article  Google Scholar 

  38. Linnert, S., Reid, V., and Westermann, G., ERP correlates of two separate top-down mechanisms in visual categorization, Int. J. Psychophysiol., 2016, vol. 108, p. 83.

    Article  Google Scholar 

  39. Vogel, E.K. and Machizawa, M.G., Neural activity predicts individual differences in visual working memory capacity, Nature, 2004, vol. 428, no. 6984, p. 748.

    Article  CAS  PubMed  Google Scholar 

  40. Bianco, V., Berchicci, M., Quinzi, F., et al., Females are more proactive, males are more reactive: neural basis of the gender-related speed/accuracy trade-off in visuo-motor tasks, Brain Struct. Funct., 2020, vol. 225, no. 1, p. 187.

    Article  CAS  PubMed  Google Scholar 

  41. Picton, T.W., The P300 wave of the human event-related potential, J. Clin. Neurophysiol., 1992, vol. 9, no. 4, p. 456.

    Article  CAS  PubMed  Google Scholar 

  42. Bledowski, C., Cohen Kadosh, K., Wibral, M., et al., Mental chronometry of working memory retrieval: a combined functional magnetic resonance imaging and event-related potentials approach, J. Neurosci., 2006, vol. 26, no. 3, p. 821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rawdon, C., Murphy, J., Blanchard, M.M., et al., Reduced P300 amplitude during retrieval on a spatial working memory task in a community sample of adolescents who report psychotic symptoms, BMC Psychiatry, 2013, vol. 13, no. 1, p. 125.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maciejewska, K. and Drzazga, Z., Differences in spatio‑temporal distribution of the visual P3b event-related potential between young men and women, Acta Neurobiol. Exp. (Warsaw), 2019, vol. 79, p. 25.

    Article  Google Scholar 

  45. Vaquero, E., Cardoso, M.J., Vázquez, M., et al., Gender differences in event-related potentials during visual-spatial attention, Int. J. Neurosci., 2004, vol. 114, no. 4, p. 541.

    Article  CAS  PubMed  Google Scholar 

  46. Deldin, P.J., Duncan, C.C., and Miller, G.A., Season, gender, and P300, Biol. Psychol., 1994, vol. 39, no. 1, p. 15.

    Article  CAS  PubMed  Google Scholar 

  47. Steffensen, S.C., Ohran, A.J., Shipp, D.N., et al., Gender-selective effects of the P300 and N400 components of the visual evoked potential, Vision Res., 2008, vol. 48, no. 7, p. 917.

    Article  PubMed  Google Scholar 

  48. Morrison, R.G., Reber, P.J., and Bharani, K.L., et al., Dissociation of category-learning systems via brain potentials, Front. Hum. Neurosci., 2015, vol. 9, p. 389.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rabi, R., Joanisse, M.F., Zhu, T., et al., Cognitive changes in conjunctive rule-based category learning: an ERP approach, Cognit. Affect. Behav. Neurosci., 2018, vol. 18, no. 5, p. 1034.

    Article  Google Scholar 

  50. Gevins, A. and Smith, M.E., Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style, Cereb. Cortex, 2000, vol. 10, no. 9, p. 829.

    Article  CAS  PubMed  Google Scholar 

  51. Nittono, H., Nageishi, Y., Nakajima, Y., et al., Event-related potential correlates of individual differences in working memory capacity, Psychophysiology, 1999, vol. 36, no. 6, p. 745.

    Article  CAS  PubMed  Google Scholar 

  52. Hill, A.C., Laird, A.R., and Robinson, J.L., Gender differences in working memory networks: a BrainMap meta-analysis, Biol. Psychol., 2014, vol. 102, p. 18.

    Article  PubMed  Google Scholar 

  53. Alarcón, G., Cservenka, A., Fair, D.A., et al., Sex differences in the neural substrates of spatial working memory during adolescence are not mediated by endogenous testosterone, Brain Res., 2014, vol. 1593, p. 40.

    Article  PubMed  Google Scholar 

  54. Zilles, D., Lewandowski, M., Vieker, H., et al., Gender differences in verbal and visuospatial working memory performance and networks, Neuropsychobiology, 2016, vol. 73, no. 1, p. 52.

    Article  PubMed  Google Scholar 

  55. Yin, J., Gao, Z., Jin, X., et al., Tracking the mismatch information in visual short term memory: an event-related potential study, Neurosci. Lett., 2011, vol. 491, no. 1, p. 26.

    Article  CAS  PubMed  Google Scholar 

  56. Mikhailova, E.S., Gerasimenko, N.Yu., Slavutskaya, A.V., et al., Temporal and topographic characteristics of evoked potentials in the conflict of two consecutive visual stimuli in a working memory task, Hum. Physiol., 2017, vol. 43, no. 3, p. 248.

    Article  Google Scholar 

  57. Coluccia, E. and Louse, G., Gender differences in spatial orientation: a review, J. Environ. Psychol., 2004, vol. 24, no. 3, p. 329.

    Article  Google Scholar 

  58. Lawton, C.A., Strategies for indoor way-finding: the role of orientation, J. Environ. Psychol., 1996, vol. 16, p. 137.

    Article  Google Scholar 

  59. Saucier, D.M., Green, S.M., Leason, J., et al., Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies? Behav. Neurosci., 2002, vol. 116, no. 3, p. 403.

    Article  PubMed  Google Scholar 

  60. Garden, S., Cornoldi, C., and Logie, R.H., Visuo-spatial working memory in navigation, Appl. Cognit. Psychol., 2002, vol. 16, no. 1, p. 35.

    Article  Google Scholar 

  61. Pazzaglia, F. and Cornoldi, C., The role of distinct components of visual-spatial working memory in the processing of texts, Memory, 1999, vol. 7, no. 1, p. 19.

    Article  CAS  PubMed  Google Scholar 

  62. Bosco, A., Longoni, A.M., and Vecchi, T., Gender effects in spatial orientation: cognitive profiles and mental strategies, Appl. Cognit. Psychol., 2004, vol. 18, no. 5, p. 519.

    Article  Google Scholar 

Download references

Funding

The study was supported by the state budget under the state order of the Ministry of Education and Science of the Russian Federation for 2021–2023. Electrophysiological studies were carried out on the basis of the Center for the Collective Use of Scientific Equipment for Functional Brain Mapping at the Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences (Moscow).

Author information

Authors and Affiliations

Authors

Contributions

E.S. Mikhailova and N.Yu. Moshnikova planned the study. N.Yu. Moshnikova and A.B. Kushnir created an image library. E.S. Mikhailova and N.Yu. Moshnikova programmed the experimental series in the E-Prime software. N.Yu. Moshnikova and A.B. Kushnir conducted experiments. E.S. Mikhailova, N.Yu. Moshnikova, and A.B. Kushnir processed and analyzed the data obtained. E.S. Mikhailova wrote an article, N.Yu. Moshnikova and A.B. Kushnir made the illustrations. All authors contributed to the final version of the manuscript and approved it.

Corresponding author

Correspondence to E. S. Mikhailova.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the biomedical ethics principles formulated in the 1964 Helsinki Declaration and its later amendments and approved by the local Bioethics Committee of the Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences (Moscow). Minutes no. 1 of January 15, 2020.

Conflict of interest. The authors declare that they do not have a conflict of interest.

Informed consent. Each study participant provided a signed voluntary written informed consent after explanation of the potential risks and benefits, as well as the nature of the upcoming study, to him.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailova, E.S., Kushnir, A.B. & Moshnikova, N.Y. Neurofunctional Organization of Working Memory for the Basic Characteristics of Visual Space in Males and Females. Hum Physiol 49, 22–34 (2023). https://doi.org/10.1134/S036211972260031X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211972260031X

Keywords:

Navigation