Malhotra, A., Allison, B.J., Castillo-Melendez, M., et al., Neonatal morbidities of fetal growth restriction: pathophysiology and impact, Front. Endocrinol. (Lausanne), 2019, vol. 10, art. ID 55.
Wang, Y., Fu, W., and Liu, J., Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions, J. Matern.-Fetal Neonat. Med., 2016, vol. 29, no. 4, p. 660.
CAS
Article
Google Scholar
Armengaud, J.B., Yzydorczyk, C., Siddeek, B., et al., Intrauterine growth restriction: clinical consequences on health and disease at adulthood, Reprod. Toxicol., 2021, vol. 99, p. 168.
CAS
PubMed
Article
Google Scholar
Leitner, Y., Fattal-Valevski, A., Geva, R., et al., Neurodevelopmental outcome of children with intrauterine growth retardation: a longitudinal, 10-year prospective study, J. Child Neurol., 2007, vol. 22, no. 5, p. 580.
PubMed
Article
Google Scholar
Saenger, P., Czernichow, P., Hughes, I., and Reiter, E.O., Small for gestational age: short stature and beyond, Endocrinol. Rev., 2007, vol. 28, no. 2, p. 219.
CAS
Article
Google Scholar
Miller, S.L., Huppi, P.S., and Mallard, C., The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome, J. Physiol., 2016, vol. 594, no. 4, p. 807.
CAS
PubMed
PubMed Central
Article
Google Scholar
Figueras, F. and Gardosi, J., Intrauterine growth restriction: new concepts in antenatal surveillance, diagnosis, and management, Am. J. Obstet. Gynecol., 2011, vol. 204, no. 4, p. 288.
PubMed
Article
Google Scholar
Krishna, R.G. and Bhat, B., Molecular mechanisms of intrauterine growth restriction, J. Matern.-Fetal Neonat. Med., 2018, vol. 31, no. 19, p. 2634.
Article
CAS
Google Scholar
Romo, A., Carceller, R., and Tobajas, J., Intrauterine growth retardation (IUGR): epidemiology and etiology, Pediatr. Endocrinol. Rev., 2009, vol. 6, suppl. 3, p. 332.
PubMed
Google Scholar
Nasiri, K., Moodie, E.E.M., and Abenhaim, H.A., To what extent is the association between race and fetal growth restriction explained by adequacy of prenatal care? A causal mediation analysis of a retrospectively selected cohort, Am. J. Epidemiol., 2020, vol. 189, no. 11, p. 1360.
PubMed
PubMed Central
Article
Google Scholar
Nardozza, L.M., Caetano, A.C., Zamarian, A.C., et al., Fetal growth restriction: current knowledge, Arch. Gynecol. Obstet., 2017, vol. 295, no. 5, p. 1061.
PubMed
Article
Google Scholar
Sharma, D., Shastri, S., and Sharma, P., Intrauterine growth restriction: antenatal and postnatal aspects, Clin. Med. Insights Pediatr., 2016, vol. 10, p. 67.
PubMed
PubMed Central
Google Scholar
Strizhakov, A.N., Ignatko, I.V., Timokhina, E.V., and Belotserkovtseva, L.D., Sindrom zaderzhki rosta ploda: patogenez, diagnostika, lechenie, akusherskaya taktika (Intrauterine Fetal Growth Restriction: Pathogenesis, Diagnostic, Management, and Obstetric Tactics), Moscow: GEOTAR-Media, 2013.
Dall’Asta, A., Brunelli, V., and Prefumo, F., Early onset fetal growth restriction, Matern. Health Neonatol. Perinatol., 2017, vol. 3, p. 2.
PubMed
PubMed Central
Article
Google Scholar
Figueras, F. and Gratacos, E., Update on the diagnosis and classification on fetal growth restriction and proposal of a stage-based management protocol, Fetal Diagn. Ther., 2014, vol. 36, no. 2, p. 86.
PubMed
Article
Google Scholar
Ignatko, I.V., Denisova, Yu.V., Filippova, Yu.A., and Dubinin, A.O., Differential diagnostics of early and late forms of fetal growth retardation syndrome, Ural. Med. Zh., 2020, no. 12 (195), p. 91.
Giussani, D.A., The fetal brain sparing response to hypoxia: physiological mechanisms, J. Physiol., 2016, vol. 594, no. 5, p. 1215.
CAS
PubMed
PubMed Central
Article
Google Scholar
Poudel, R., McMillen, I.C., Dunn, S.L., et al., Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus, Am. J. Physiol.: Regul. Integr. Comp. Physiol., 2015, vol. 308, no. 3, p. 151.
Google Scholar
Cohen, E., Baerts, W., and van Bel, F., Brain-sparing in intrauterine growth restriction: considerations for the neonatologist, Neonatology., 2015, vol. 108, no. 4, p. 269.
PubMed
Article
Google Scholar
Murray, E., Fernades, M., Fazel, M., et al., Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review, Br. J. Obstet. Gynaecol., 2015, vol. 122, no. 8, p. 1062.
CAS
Article
Google Scholar
Zhu, M.Y., Milligan, N., Keating, S., et al., The hemodynamics of late-onset intrauterine growth restriction by MRI, Am. J. Obstet. Gynecol., 2016, vol. 214, no. 3, p. 367.
PubMed
Article
Google Scholar
Samuelsen, G.B., Pakkenberg, B., Bogdanovic, N., et al., Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants, Am. J. Obstet. Gynecol., 2007, vol. 197, no. 1, p. 56.
PubMed
Article
Google Scholar
Dubois, J., Benders, M., Borradori-Tolsa, C., et al., Primary cortical folding in the human newborn: an early marker of later functional development, Brain, 2008, vol. 131, no. 8, p. 2028.
CAS
PubMed
PubMed Central
Article
Google Scholar
Dieni, S. and Rees, S., Dendritic morphology is altered in hippocampal neurons following prenatal compromise, J. Neurobiol., 2003, vol. 55, no. 1, p. 41.
PubMed
Article
Google Scholar
Damodaram, M.S., Story, L., Eixarch, E., et al., Fetal volumetry using magnetic resonance imaging in intrauterine growth restriction, Early Hum. Dev., 2012, vol. 88, supl. 1, p. 35.
Article
Google Scholar
Evsyukova, I.I., Koval’chuk-Kovalevskaya, O.V., Maslyanyuk, N.A., and Dodkhoev, D.S., Features of cyclic sleep organization and melatonin production in full-term newborns with intrauterine growth retardation, Hum. Physiol., 2013, vol. 39, no. 6, p. 617.
CAS
Article
Google Scholar
Eixarch, E., Meler, E., Iraola, A., et al., Neurodevelopmental outcome in 2-year-old infants who were small-for-gestational age term fetuses with cerebral blood flow redistribution, Ultrasound Obstet. Gynecol., 2008, vol. 32, no. 7, p. 894.
CAS
PubMed
Article
Google Scholar
Rosa, S.J., Steegers, E.A., Verburg, B.O., et al., What is spared by fetal brain-sparing? Fetal circulatory redistribution and behavioral problems in the general population, Am. J. Epidemiol., 2008, vol. 168, no. 10, p. 1145.
Article
Google Scholar
Hartkopf, J., Schleger, F., Keune, J., et al., Impact of intrauterine growth restriction on cognitive and motor development at 2 years of age, Front. Physiol., 2018, vol. 9, p. 1278.
PubMed
PubMed Central
Article
Google Scholar
Sacchi, C., Marino, C., Nosarti, C., et al., Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis, J.A.M.A. Pediatr., 2020, vol. 174, no. 8, p. 772.
Google Scholar
Bellido-González, M., Díaz-López, M.A., López-Criado, S., and Maldonado-Lozano, J., Cognitive functioning and academic achievement in children aged 6–8 years, born at term after intrauterine growth restriction and fetal cerebral redistribution, J. Pediatr. Psychol., 2017, vol. 42, no. 3, p. 345.
PubMed
Google Scholar
Korkalainen, N., Partanen, L., Rasanen, L., et al., Fetal hemodynamics and language skills in primary school-aged children with fetal growth restriction: a longitudinal study, Early Hum. Dev., 2019, vol. 134, p. 34.
PubMed
Article
Google Scholar
Partanen, L., Korkalainen, N., Mäkikallio, K., et al., Fetal growth restriction is associated with poor reading and spelling skills at eight years to 10 years of age, Acta Paediatr., 2018, vol. 107, no. 1, p. 79.
PubMed
Article
Google Scholar
Ozhegov, A.M., Trubachev, E.A., and Petrova, I.N., Cardio-cerebral hemodynamics in children of the first year of life born with intrauterine growth restriction, Detskaya Bol’nitsa, 2012, vol. 48, no. 2, p. 34.
Google Scholar
Geva, R., Eshel, R., Leitner, Y., et al., Neuropsychological outcome of children with intrauterine growth restriction: a 9-year prospective study, Pediatrics, 2006, vol. 118, no. 1, p. 91.
PubMed
Article
Google Scholar
Baschat, A.A., Neurodevelopment after fetal growth restriction, Fetal Diagn. Ther., 2014, vol. 36, no. 2, p. 136.
PubMed
Article
Google Scholar
Pels, A., Knaven, O.C., Wijnberg-Williams, B.J., et al., Neurodevelopmental outcomes at five years after early-onset fetal growth restriction: analyses in a Dutch subgroup participating in a European management trial, Eur. J. Obstet. Gynecol. Reprod. Biol., 2019, vol. 234, p. 63.
CAS
PubMed
Article
Google Scholar
Vollmer, B. and Edmonds, C.J., School age neurological and cognitive outcomes of fetal growth retardation or small for gestational age Birth weight, Front. Endocrinol., 2019, vol. 10, p. 186.
Article
Google Scholar
Arcangelli, T., Thilaganathan, B., Hooper, R., et al., Neurodevelopmental delay in small babies at term: a systematic review, Ultrasound Obstet. Gynecol., 2012, vol. 40, no. 3, p. 267.
Article
Google Scholar
Castillo-Melendez, M., Yawno, T., Allison, B., et al., Cerebrovascular adaptations to chronic hypoxia in the growth restricted lamb, Int. J. Dev. Neurosci., 2015, vol. 45, p. 55.
CAS
PubMed
Article
Google Scholar
Tolcos, M., Petratos, S., Hirst, J.J., et al., Blocked, delayed, or obstructed: What causes poor white matter development in intrauterine growth restricted infants? Prog. Neurobiol., 2017, vol. 154, p. 62.
PubMed
Article
Google Scholar
Alves de Alencar Rocha, A.K., Allison, B.J., Yawno, T., et al., Early- versus late-onset fetal growth restriction differentially affects the development of the fetal sheep brain, Dev. Neurosci., 2017, vol. 39, nos. 1–4, p. 141.
CAS
PubMed
Article
Google Scholar
Uysal, A., Oktem, G., Yilmaz, O., et al., Quantitative immunohistochemical analysis f nitric oxide synthases and apoptosis regulator proteins in the fetal rat brain following maternal uterine artery ligation, Int. J. Neurosci., 2008, vol. 118, no. 6, p. 891.
CAS
PubMed
Article
Google Scholar
Lister, J.P., Blatt, G.J., De Bassio, W.A., et al., Effect of prenatal protein malnutrition on numbers of neurons in the principal cell layers of the adult rat hippocampal formation, Hipocampus, 2005, vol. 15, no. 3, p. 393.
Article
Google Scholar
Mallard, C., Loeliger, M., Copolov, D., and Rees, S., Reduced number of neurons in the hippocampus and the cerebellum in the postnatal guinea-pig following intrauterine growth restriction, Neuroscience, 2000, vol. 100, no. 2, p. 327.
CAS
PubMed
Article
Google Scholar
Sasaki, J., Fukami, E., Mimura, S., et al., Abnormal cerebral neuronal migration in a rat model of intrauterine growth retardation induced by synthetic thromboxane A2, Early Hum. Dev., 2000, vol. 58, no. 2, p. 91.
CAS
PubMed
Article
Google Scholar
Basilious, A., Yager, J., and Fehlings, M.G., Neurological outcomes of animal models of uterine artery ligation and relevance to human intrauterine growth restriction: a systematic review, Dev. Med. Child Neurol., 2015, vol. 57, no. 5, p. 420.
PubMed
Article
Google Scholar
Batalle, D., Muñoz-Moreno, E., Arbat-Plana, A., et al., Long-term reorganization of structural brain networks in a rabbit model of intrauterine growth restriction, NeuroImage, 2014, vol. 100, p. 24.
PubMed
Article
Google Scholar
Tumanova, N.L., Vasiliev, D.S., Dubrovskaya, N.M., and Zhuravin, I.A., Ultrastructural alterations in the sensorimotor cortex upon delayed development of motor behavior in early ontogenesis of rats exposed to prenatal hypoxia, Cell Tissue Biol., 2018, vol. 12, no. 5, p. 419.
Article
Google Scholar
Hsiao, E.Y. and Patterson, P.H., Placental regulation of maternal-fetal interactions and brain development, Dev. Neurobiol., 2012, vol. 72, no. 10, p. 1317.
PubMed
Article
Google Scholar
Perez, M., Robbins, M.E., Revhaug, C., and Saugstad, O.D., Oxygen radical disease in the newborn, revisited: oxidative stress and disease in the newborn period, Free Radical Biol. Med., 2019, vol. 142, p. 61.
CAS
Article
Google Scholar
D’Angelo, G., Chimenz, R., Reiter, R.J., and Gitto, E., Use of melatonin in oxidative stress related neonatal diseases, Antioxidant (Basel), 2020, vol. 9, no. 6, p. 477.
Article
CAS
Google Scholar
Lemasters, J.J., Qian, T., He, L., et al., Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy, Antioxid. Redox Signaling, 2002, vol. 4, no. 5, p. 769.
CAS
Article
Google Scholar
Solevag, A.L., Schmolzer, G.M., and Cheung, P.Y., Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia, Free Radical Biol. Med., 2019, vol. 142, p. 113.
CAS
Article
Google Scholar
Vasiljevic, B., Maglajlic-Djukic, S., Gojnic, M., et al., New insights into the pathogenesis of perinatal hypoxic-ischemic brain injury, Pediatr. Int., 2011, vol. 53, no. 4, p. 454.
CAS
PubMed
Article
Google Scholar
Back S.A., Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms, Ment. Retard. Dev. Disabil. Res. Rev., 2006, vol. 12, no. 2, p. 129.
PubMed
Article
Google Scholar
Chiarello, D.I., Abada, C., Rojasa, D., et al., Oxidative stress: normal pregnancy versus preeclampsia, Biochim. Biophys. Acta, Mol. Basis Dis., 2020, vol. 1866, no. 2, art. ID 165354.
Rodrigo, J., Fernandez, A.P., and Serrano, J., The role of free radicals in cerebral hypoxia and ischemia, Free Radical Biol. Med., 2005, vol. 39, no. 1, p. 26.
CAS
Article
Google Scholar
Korkmaz, A., Rosales-Corral, S., and Reiter, R.J., Gene regulation by melatonin linked to epigenetic phenomena, Gene, 2012, vol. 503, no. 1, p. 1.
CAS
PubMed
Article
Google Scholar
Morozova, A.Yu., Arutyunyan, A.V., Morozova, P.Yu., et al., Effect of prenatal hypoxia on activity of the soluble forms of cholinesterases in rat brain structures during early postnatal ontogenesis, J. Evol. Biochem. Physiol., 2020, vol. 56, no. 6, p. 531.
CAS
Article
Google Scholar
Zakharova, E.I., Svinov, M.M., Germanova, E.N., et al., Involvement mechanisms of cholinergic systems into the morphofunctional reorganization of the neocortex and hippocampus in brain hypoxia, in Problemy gipoksii: molekulyarnye, fiziologicheskie i meditsinskie aspekty (Hypoxia: Molecular, Physiological, and Medical Aspects), Luk’yanova, L.D. and Ushakova, I.B., Moscow, 2004.
Kaur, C., Rathnasamy, G., and Ling, E.A., Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina, J. Neuroimmun. Pharmacol., 2013, vol. 8, no. 1, p. 66.
Article
Google Scholar
Hossain, M.A., Hypoxic-ischemic injury in neonatal brain: involvement of a novel neuronal molecule in neuronal cell death and potential target for neuroprotection, Int. J. Dev. Neurosci., 2008, vol. 26, no. 1, p. 93.
CAS
PubMed
Article
Google Scholar
Sullivan, E.L., Grayson, B., Takahashi, D., et al., Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring, J. Neurosci., 2010, vol. 30, no. 10, p. 3826.
CAS
PubMed
PubMed Central
Article
Google Scholar
Maltepe, E., Bakardjiev, A.I., and Fisher, S.J., The placenta: transcriptional, epigenetic, and physiological integration during development, J. Clin. Invest., 2010, vol. 120, no. 4, p. 1016.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jawahar, M.C., Murgatroyd, C., Harrison, E.L., and Baune, B.T., Epigenetic alterations following early postnatal stress: a review on novel aetiological mechanisms of common psychiatric disorders, Clin. Epigenet., 2015, vol. 7, p. 122.
Article
CAS
Google Scholar
Liu, J. and Casaccia, P., Epigenetic regulation of oligodendrocyte identity, Trends Neurosci., 2010, vol. 33, no. 4, p. 193.
CAS
PubMed
PubMed Central
Article
Google Scholar
van der Burg, J.W., Sen, S., Chomitz, V.R., et al., The role of systemic inflammation linking maternal BMI to neurodevelopment in children, Pediatr. Res., 2016, vol. 79, no. 1-1, p. 3.
Ogata, J., Yamanishi, H., and Ishibashi-Ueda, H., Review: role of cerebral vessels in ischaemic injury of the brain, Neuropathol. Appl. Neurobiol., 2011, vol. 37, no. 1, p. 40.
CAS
PubMed
Article
Google Scholar
Goines, P.E., Croen, L.A., Braunschweig, D., et al., Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study, Mol. Autism, 2011, vol. 2, no. 13, p. 1.
Article
CAS
Google Scholar
McGowan, P.O. and Szyf, M., The epigenetics of social adversity in early life: implications for mental health outcomes, Neurobiol. Dis., 2010, vol. 39, no. 10, p. 66.
PubMed
Article
Google Scholar
Lesch, K.-P., When the serotonin transporter gene meets adversity: the contribution of animal models to understanding epigenetic mechanisms in affective disorders and resilience, Curr. Top. Behav. Neurosci., 2011, vol. 7, p. 251.
PubMed
Article
Google Scholar
Bale, T.L., Baram, T.Z., Brown, A.S., et al., Early life programming and neurodevelopmental disorders, Biol. Psychiatry, 2010, vol. 68, no. 4, p. 314.
PubMed
PubMed Central
Article
Google Scholar
Evsyukova, I.I., The role of melatonin in prenatal ontogenesis, J. Evol. Biochem. Phys., 2021, vol. 57, no. 1, p. 33.
CAS
Article
Google Scholar
Korkmaz, A. and Reiter, R.J., Epigenetic regulation: a new research area for melatonin, J. Pineal Res., 2008, vol. 44, no. 1, p. 41.
CAS
PubMed
Google Scholar
Sharma, R., Ottenhof, T., Rzeczkowska, P.A., and Niles, L.P., Epigenetic targets for melatonin: induction of histone H3 hyperacetylation and gene expression in C17.2 neural stem cells, J. Pineal Res., 2008, vol. 45, no. 3, p. 277.
CAS
PubMed
Article
Google Scholar
Galano, A., Tan, D.X., Reiter, R.J., et al., Melatonin: a versatile protector against oxidative DNA damage, Molecules, 2018, vol. 23, no. 3, p. 530.
PubMed Central
Article
CAS
Google Scholar
Ireland, K.E., Maloyan, A., and Myatt, L., Melatonin improves mitochondrial respiration in syncytiotrophoblasts from placentas of obese women, Reprod. Sci., 2018, vol. 25, no. 1, p. 120.
CAS
PubMed
Article
Google Scholar
Chitimus, D.M., Popescu, M.R., Voiculescu, S.E., et al., Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease, Biomolecules, 2020, vol. 10, no. 9, p. 1211.
CAS
PubMed Central
Article
Google Scholar
Carloni, C., Favrais, G., Saliba, E., et al., Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway, J. Pineal Res., 2016, vol. 61, no. 3, p. 370.
CAS
PubMed
Article
Google Scholar
Olivier, P., Fontaine, R.H., Loron, G., et al., Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats, PLoS One, 2009, vol. 4, no. 9, p. 7128.
Article
CAS
Google Scholar
Tarocco, A., Caroccia, N., Morciano, G., et al., Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care, Cell Death Dis., 2019, vol. 10, no. 4, p. 317.
PubMed
PubMed Central
Article
Google Scholar
Arutjunyan, A.V., Evsyukova, I.I., and Polyako-va, V.O., The role of melatonin in morphofunctional development of the brain in early ontogeny, Neurochem. J., 2019, vol. 13, no. 3, p. 240.
CAS
Article
Google Scholar
Sivakumar, J., Lu, J., Ling, E.A., and Kaur, C., Vascular endothelial growth factor and nitric oxide production in response to hypoxia in the choroid plexus in neonatal brain, Brain Pathol., 2008, vol. 18, no. 1, p. 71.
CAS
PubMed
Article
Google Scholar
Kaur, C., Sivakumar, Y., Lu, J., et al., Melatonin attenuates hypoxia-induced ultrastructural changes and increased vascular permeability in the developing hippocampus, Brain Pathol., 2008, vol. 18, no. 4, p. 533.
CAS
PubMed
PubMed Central
Google Scholar
Shimada, M., Seki, H., Samejima, M., et al., Salivary melatonin levels and sleep-wake rhythms in pregnant women with hypertensive and glucose metabolic disorders: a prospective analysis, Biosci. Trends, 2016, vol. 10, no. 1, p. 34.
CAS
PubMed
Article
Google Scholar
Evsyukova, I.I., Molecular functional mechanisms of the mother-placenta-fetus system in obesity and gestational diabetes mellitus, Mol. Med., 2020, vol. 18, no. 1, p. 56.
Google Scholar
Bouchlariotou, S., Liakopoulos, V., Giannopou-lou, M., et al., Melatonin secretion is impaired in women with preeclampsia and abnormal circadian blood pressure rhythm, Ren. Failure, 2014, vol. 36, no. 7, p. 1001.
CAS
Article
Google Scholar
Shalal, M.M., Kadhim, I.M., Abbas, N.S., and Abdulsattar, G., Measuring of plasma melatonin level in patients with preeclampsia, J. Fac. Med. Baghdad, 2017, vol. 59, no. 3, p. 234.
Article
Google Scholar
Zeng K., Gao Y., Wan J., et al., The reduction in circulating levels of melatonin may be associated with the development of preeclampsia, J. Hum. Hypertens., 2016, vol. 30, no. 11, p. 666.
CAS
PubMed
Article
Google Scholar
Lanoix, D., Guerin, P., and Vaillancourt, C., Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy, J. Pineal Res., 2012, vol. 53, no. 4, p. 417.
CAS
PubMed
Article
Google Scholar
Gupta, S., Aziz, N., Sekhon, L., et al., Lipid peroxidation and antioxidant status in preeclampsia. A systematic review, Obstet. Gynecol. Surv., 2009, vol. 64, no. 11, p. 750.
PubMed
Article
Google Scholar
Berbets, A., Koval, H., Barbe, A., et al., Melatonin decreases and cytokines increase in women with placental insufficiency, J. Matern.-Fetal Neonat. Med., 2021, vol. 34, no. 3, p. 373.
CAS
Article
Google Scholar
Ivanov, D.O., Evsyukova, I.I., Mazzoccoli, G., et al., The role of prenatal melatonin in the regulation of childhood obesity, Biology, 2020, vol. 9, no. 4, p. 72.
CAS
PubMed Central
Article
Google Scholar
Tain, Y.-L., Huang, L.-T., and Hsu, C.-N., Developntal programming of adult disease: reprogramming by melatonin? Int. J. Mol. Sci., 2017, vol. 18, no. 2, p. 426.
PubMed Central
Article
CAS
Google Scholar
Wilkinson, D., Shepherd, E., and Wallace, E.M., Melatonin for women in pregnancy for neuroprotection of the fetus, Cochrane Database Syst. Rev., 2016, vol. 3, no. 3, art. ID CDO10527.
Google Scholar
Sagrillo-Fagundes, L., Assunção Salustiano, E.M., Ruano, R., et al., Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation, J. Pineal Res., 2018, vol. 65, no. 4, p. 12520.
Article
CAS
Google Scholar