Skip to main content
Log in

Regulation of Mitochondrial Biogenesis in Human Skeletal Muscles Induced by Aerobic Exercise and Disuse

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Physical inactivity and disuse lead to a decrease in the functionality of skeletal muscles (oxidative capacity, insulin sensitivity, and performance), which is associated with a change in mitochondrial density. In contrast, aerobic exercise training is effective for maintaining/increasing skeletal muscle mitochondrial density and functionality. The review considers the effect of increasing and decreasing physical activity on the mitochondrial density of human skeletal muscles, as well as the main mechanisms responsible for these changes. It is discussed that the content of mitochondrial proteins can be regulated by changing the content of their mRNAs, changes in the rate of synthesis specific for mitochondrial proteins, as well as changes in the rate of degradation, transport, import, and stability of mitochondrial proteins. It has been shown that the mechanisms of regulation of the mitochondrial proteins content under various interventions are significantly different. At the same time, their contribution to the change in the content of mitochondrial proteins is characterized clearly insufficiently, which emphasizes the relevance of further research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lanza, I.R., Short, D.K., Short, K.R., et al., Endurance exercise as a countermeasure for aging, Diabetes, 2008, vol. 57, no. 11, p. 2933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pedersen, B.K. and Febbraio, M.A., Muscles, exercise and obesity: skeletal muscle as a secretory organ, Nat. Rev. Endocrinol., 2012, vol. 8, no. 8, p. 457.

    Article  CAS  PubMed  Google Scholar 

  3. Demontis, F., Piccirillo, R., Goldberg, A.L., and Perrimon, N., The influence of skeletal muscle on systemic aging and lifespan, Aging Cell, 2013, vol. 12, no. 6, p. 943.

    Article  CAS  PubMed  Google Scholar 

  4. Agudelo, L.Z., Femenía, T., Orhan, F., et al., Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression, Cell, 2014, vol. 159, no. 1, p. 33.

    Article  CAS  PubMed  Google Scholar 

  5. Waller, L., Krüger, K., Conrad, K., et al., Effects of different types of exercise training on pulmonary arterial hypertension: a systematic review, J. Clin. Med., 2020, vol. 9, no. 6, p. 1689.

    Article  PubMed Central  Google Scholar 

  6. Schild, M., Ruhs, A., Beiter, T., et al., Basal and exercise induced label-free quantitative protein profiling of m. vastus lateralis in trained and untrained individuals, J. Proteomics, 2015, vol. 122, p. 119.

    Article  CAS  PubMed  Google Scholar 

  7. Makhnovskii, P.A., Zgoda, V.G., Bokov, R.O., et al., Regulation of proteins in human skeletal muscle: the role of transcription, Sci. Rep., 2020, vol. 10, no. 1, p. 3514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saltin, B., Henriksson, J., Nygaard, E., et al., Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners, Ann. N.Y. Acad. Sci., 1977, vol. 301, p. 3.

    Article  CAS  PubMed  Google Scholar 

  9. San-Millán, I. and Brooks, G.A., Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals, Sports Med., 2018, vol. 48, no. 2, p. 467.

    Article  PubMed  Google Scholar 

  10. Montero, D., Cathomen, A., Jacobs, R.A., et al., Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training, J. Physiol., 2015, vol. 593, no. 20, p. 4677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hawley, J.A., Hargreaves, M., Joyner, M.J., and Zierath, J.R., Integrative biology of exercise, Cell, 2014, vol. 159, no. 4, p. 738.

    Article  CAS  PubMed  Google Scholar 

  12. Tomilovskaya, E., Shigueva, T., Sayenko, D., et al., Dry immersion as a ground-based model of microgravity physiological effects, Front. Physiol., 2019, vol. 10, p. 284.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sharlo, K., Tyganov, S.A., Tomilovskaya, E., et al., Effects of various muscle disuse states and countermeasures on muscle molecular signaling, Int. J. Mol. Sci., 2022, vol. 23, no. 1, p. 468.

    Article  CAS  Google Scholar 

  14. Hackney, K.J. and Ploutz-Snyder, L.L., Unilateral lower limb suspension: integrative physiological knowledge from the past 20 years (1991–2011), Eur. J. Appl. Physiol., 2012, vol. 112, no. 1, p. 9.

    Article  CAS  PubMed  Google Scholar 

  15. Hyatt, H., Deminice, R., Yoshihara, T., and Powers, S.K., Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: a review of the causes and effects, Arch. Biochem. Biophys., 2019, vol. 662, p. 49.

    Article  CAS  PubMed  Google Scholar 

  16. Gram, M., Dahl, R., and Dela, F., Physical inactivity and muscle oxidative capacity in humans, Eur. J. Sport Sci., 2013, vol. 14, no. 4, p. 376.

    Article  PubMed  Google Scholar 

  17. Brocca, L., Cannavino, J., Coletto, L., et al., The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms, J. Physiol., 2012, vol. 590, no. 20, p. 5211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hather, B.M., Adams, G.R., Tesch, P.A., and Dudley, G.A., Skeletal muscle responses to lower limb suspension in humans, J. Appl. Physiol., 1992, vol. 72, no. 4, p. 1493.

    Article  CAS  PubMed  Google Scholar 

  19. Berg, H.E., Dudley, G.A., Hather, B., and Tesch, P.A., Work capacity and metabolic and morphologic characteristics of the human quadriceps muscle in response to unloading, Clin. Physiol., 1993, vol. 13, no. 4, p. 337.

    Article  CAS  PubMed  Google Scholar 

  20. Salanova, M., Schiffl, G., Püttmann, B., et al., Molecular biomarkers monitoring human skeletal muscle fibers and microvasculature following long-term bed rest with and without countermeasures, J. Anat., 2008, vol. 212, no. 3, p. 306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vigelsø, A., Gram, M., Wiuff, C., et al., Six weeks’ aerobic retraining after two weeks’ immobilization restores leg lean mass and aerobic capacity but does not fully rehabilitate leg strength in young and older men, J. Rehabil. Med., 2015, vol. 47, no. 6, p. 552.

    Article  PubMed  Google Scholar 

  22. Rudnick, J., Püttmann, B., Tesch, P.A., et al., Differential expression of nitric oxide synthases (NOS 1–3) in human skeletal muscle following exercise countermeasure during 12 weeks of bed rest, FASEB J., 2004, vol. 18, no. 11, p. 1228.

    Article  CAS  PubMed  Google Scholar 

  23. Arentson-Lantz, E.J., English, K.L., Paddon-Jones, D., and Fry, C.S., Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults, J. Appl. Physiol., 2016, vol. 120, no. 8, p. 965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Narici, M.V. and de Boer, M.D., Disuse of the musculo-skeletal system in space and on earth, Eur. J. Appl. Physiol., 2011, vol. 111, no. 3, p. 403.

    Article  CAS  PubMed  Google Scholar 

  25. Bamman, M.M., Clarke, M.S.F., Feeback, D.L., et al., Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution, J. Appl. Physiol., 1998, vol. 84, no. 1, p. 157.

    Article  CAS  PubMed  Google Scholar 

  26. Hortobágyi, T., Dempsey, L., Fraser, D., et al., Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans, J. Physiol., 2000, vol. 524, p. 293.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yasuda, N., Glover, E.I., Phillips, S.M., et al., Sex-based differences in skeletal muscle function and morphology with short-term limb immobilization, J. Appl. Physiol., 2005, vol. 99, no. 3, p. 1085.

    Article  PubMed  Google Scholar 

  28. Hvid, L., Aagaard, P., Justesen, L., et al., Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining, J. Appl. Physiol., 2010, vol. 109, no. 6, p. 1628.

    Article  PubMed  Google Scholar 

  29. Hood, D.A., Memme, J.M., Oliveira, A.N., and Triolo, M., Maintenance of skeletal muscle mitochondria in health, exercise, and aging, Annu. Rev. Physiol., 2019, vol. 81, p. 19.

    Article  CAS  PubMed  Google Scholar 

  30. Popov, D.V., Adaptation of skeletal muscles to contractile activity of varying duration and intensity: the role of PGC-1α, Biochemistry (Moscow), 2018, vol. 83, no. 6, p. 613.

    CAS  PubMed  Google Scholar 

  31. Perry, C.G.R. and Hawley, J.A., Molecular basis of exercise-induced skeletal muscle mitochondrial biogenesis: historical advances, current knowledge, and future challenges, Cold Spring Harb. Perspect. Med., 2018, vol. 8, no. 9, p. 1.

    Article  Google Scholar 

  32. Memme, J.M., Erlich, A.T., Phukan, G., and Hood, D.A., Exercise and mitochondrial health, J. Physiol., 2021, vol. 599, no. 3, p. 803.

    Article  CAS  PubMed  Google Scholar 

  33. Olesen, J., Kiilerich, K., and Pilegaard, H., PGC-1α-mediated adaptations in skeletal muscle, Pflugers Arch., 2010, vol. 460, no. 1, p. 153.

    Article  CAS  PubMed  Google Scholar 

  34. Narkar, V.A., Fan, W., Downes, M., et al., Exercise and PGC-1α-independent synchronization of type i muscle metabolism and vasculature by ERRγ, Cell Metab., 2011, vol. 13, no. 3, p. 283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scarpulla, R.C., Transcriptional paradigms in mammalian mitochondrial biogenesis and function, Physiol. Rev., 2008, vol. 88, no. 2, p. 611.

    Article  CAS  PubMed  Google Scholar 

  36. Pearen, M.A. and Muscat, G.E.O., The nuclear receptor Nor-1 is a pleiotropic regulator of exercise-induced adaptations, Exercise Sports Sci. Rev., 2018, vol. 46, no. 2, p. 97.

    Article  Google Scholar 

  37. Wu, Z., Huang, X., Feng, Y., et al., Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1α transcription and mitochondrial biogenesis in muscle cells, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 39, p. 14379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pérez-Schindler, J., Summermatter, S., Salatino, S., et al., The corepressor NCoR1 antagonizes PGC-1α and estrogen-related receptor α in the regulation of skeletal muscle function and oxidative metabolism, Mol. Cell. Biol., 2012, vol. 32, no. 24, p. 4913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Williams, R.S., Salmons, S., Newsholme, E.A., et al., Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle, J. Biol. Chem., 1986, vol. 261, no. 1, p. 376.

    Article  CAS  PubMed  Google Scholar 

  40. Williams, R.S., Garcia-Moll, M., Mellor, J., et al., Adaptation of skeletal muscle to increased contractile activity. Expression nuclear genes encoding mitochondrial proteins, J. Biol. Chem., 1987, vol. 262, no. 6, p. 2764.

    Article  CAS  PubMed  Google Scholar 

  41. Morrison, P.R., Biggs, R.B., and Booth, F.W., Daily running for 2 wk and mRNAs for cytochrome c and α-actin in rat skeletal muscle, Am. J. Physiol., 1989, vol. 257, no. 5, p. C936.

    Article  CAS  PubMed  Google Scholar 

  42. Freyssenet, D., Connor, M.K., Takahashi, M., and Hood, D.A., Cytochrome c transcriptional activation and mRNA stability during contractile activity in skeletal muscle, Am. J. Physiol., 1999, vol. 277, no. 1, p. E26.

    CAS  PubMed  Google Scholar 

  43. Hood, D.A., Zak, R., and Pette, D., Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome-c-oxidase subunits, Eur. J. Biochem., 1989, vol. 179, no. 2, p. 275.

    Article  CAS  PubMed  Google Scholar 

  44. Freyssenet D, Connor MK, Takahashi M, et al. Cytochrome c transcriptional activation and mRNA stability during contractile activity in skeletal muscle. Am. J. Physiol. 1999. V. 277. № 6. P E26.

    CAS  PubMed  Google Scholar 

  45. Nishida, Y., Tanaka, H., Tobina, T., et al., Regulation of muscle genes by moderate exercise, Int. J. Sports Med., 2010, vol. 31, no. 9, p. 656.

    Article  CAS  PubMed  Google Scholar 

  46. Robinson, M.M., Dasari, S., Konopka, A.R., et al., Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans, Cell Metab., 2017, vol. 25, no. 3, p. 581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Granata, C., Caruana, N.J., Botella, J., et al., Training-induced bioenergetic improvement in human skeletal muscle is associated with non-stoichiometric changes in the mitochondrial proteome without reorganization of respiratory chain content, Nat. Commun., 2021, vol. 12, no. 1, p. 7056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Radom-Aizik, S., Hayek, S., Shahar, I., et al., Effects of aerobic training on gene expression in skeletal muscle of elderly men, Med. Sci. Sports Exercise, 2005, vol. 37, no. 10, p. 1680.

    Article  CAS  Google Scholar 

  49. Chapman, M.A., Arif, M., Emanuelsson, E.B., et al., Skeletal muscle transcriptomic comparison between long-term trained and untrained men and women, Cell Rep., 2020, vol. 31, no. 12, p. 107808.

    Article  CAS  PubMed  Google Scholar 

  50. Pillon, N.J., Gabriel, B.M., Dollet, L., et al., Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity, Nat. Commun., 2020, vol. 11, no. 1, p. 470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Keller, P., Vollaard, N.B.J., Gustafsson, T., et al., A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype, J. Appl. Physiol., 2011, vol. 110, no. 1, p. 46.

    Article  CAS  PubMed  Google Scholar 

  52. Turan, N., Kalko, S., Stincone, A., et al., A systems biology approach identifies molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease, PLoS Comput. Biol., 2011, vol. 7, no. 9, p. e1002129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lindholm, M.E., Marabita, F., Gomez-Cabrero, D., et al., An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training, Epigenetics, 2014, vol. 9, no. 12, p. 1557.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lindholm, M.E., Giacomello, S., Werne Solnestam, B., et al., The impact of endurance training on human skeletal muscle memory, global isoform expression and novel transcripts, PLoS Genet., 2016, vol. 12, no. 9, p. e1006294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Clarke, K., Ricciardi, S., Pearson, T., et al., The role of Eif6 in skeletal muscle homeostasis revealed by endurance training co-expression networks, Cell Rep., 2017, vol. 21, no. 6, p. 1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Popov, D.V., Makhnovskii, P.A., Shagimardanova, E.I., et al., Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle, Am. J. Physiol.: Endocrinol. Metab., 2019, vol. 316, no. 4, p. E605.

    CAS  Google Scholar 

  57. Knuiman, P., Hangelbroek, R., Boekschoten, M., et al., Impact of protein supplementation during endurance training on changes in skeletal muscle transcriptome, BMC Genomics, 2020, vol. 21, no. 1, p. 397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Makhnovskii, P.A., Bokov, R.O., Kolpakov, F.A., and Popov, D.V., Transcriptomic signatures and upstream regulation in human skeletal muscle adapted to disuse and aerobic exercise, Int. J. Mol. Sci., 2021, vol. 22, no. 3, p. 1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, X., Zhang, Y., Ni, M., et al., Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation, Nat. Cell Biol., 2017, vol. 19, no. 6, p. 626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheng, Z., Teo, G., Krueger, S., et al., Differential dynamics of the mammalian mRNA and protein expression response to misfolding stress, Mol. Syst. Biol., 2016, vol. 12, no. 1, p. 855.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Catoire, M., Mensink, M., Boekschoten, M.V., et al., Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle, PLoS One, 2012, vol. 7, no. 11, p. e51066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McLean, C.S., Mielke, C., Cordova, J.M., et al., Gene and microRNA expression responses to exercise; relationship with insulin sensitivity, PLoS One, 2015, vol. 10, no. 5, p. e0127089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Dickinson, J.M., D’Lugos, A.C., Naymik, M.A., et al., Transcriptome response of human skeletal muscle to divergent exercise stimuli, J. Appl. Physiol., 2018, vol. 124, no. 6, p. 1529.

    Article  CAS  PubMed  Google Scholar 

  64. Vissing, K. and Schjerling, P., Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise, Sci. Data, 2014, vol. 1, p. 140041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rowlands, D.S., Thomson, J.S., Timmons, B.W., et al., Transcriptome and translational signaling following endurance exercise in trained skeletal muscle: impact of dietary protein, Physiol. Genomics, 2011, vol. 43, no. 17, p. 1004.

    Article  CAS  PubMed  Google Scholar 

  66. Neubauer, O., Sabapathy, S., Ashton, K.J., et al., Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling, J. Appl. Physiol., 2014, vol. 116, no. 3, p. 274.

    Article  CAS  PubMed  Google Scholar 

  67. Popov, D.V., Makhnovskii, P.A., Kurochkina, N.S., et al., Intensity-dependent gene expression after aerobic exercise in endurance-trained skeletal muscle, Biol. Sports, 2018, vol. 35, no. 3, p. 277.

    Article  Google Scholar 

  68. Rudler, D.L., Hughes, L.A., Perks, K.L., et al., Fidelity of translation initiation is required for coordinated respiratory complex assembly, Sci. Adv., 2019, vol. 5, no. 12, p. eaay2118.

  69. Rudler, D.L., Hughes, L.A., Viola, H.M., et al., Fidelity and coordination of mitochondrial protein synthesis in health and disease, J. Physiol., 2021, vol. 599, no. 14, p. 3449.

    Article  CAS  PubMed  Google Scholar 

  70. Khalimonchuk, O., Bird, A., and Winge, D.R., Evidence for a pro-oxidant intermediate in the assembly of cytochrome oxidase, J. Biol. Chem., 2007, vol. 282, no. 24, p. 17442.

    Article  CAS  PubMed  Google Scholar 

  71. Hu, D., Liu, Z., Qi, X., and Perez, M.J., Mitochondrial quality control strategies: potential therapeutic targets for neurodegenerative diseases? Front. Neurosci., 2021, vol. 15, p. 746873.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chopard, A., Lecunff, M., Danger, R., et al., Large-scale mRNA analysis of female skeletal muscles during 60 days of bed rest with and without exercise or dietary protein supplementation as countermeasures, Physiol. Genomics, 2009, vol. 38, no. 3, p. 291.

    Article  CAS  PubMed  Google Scholar 

  73. Abadi, A., Glover, E.I., Isfort, R.J., et al., Limb immobilization induces a coordinate down-regulation of mitochondrial and other metabolic pathways in men and women, PLoS One, 2009, vol. 4, no. 8, p. e6518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Reich, K.A., Chen, Y.W., Thompson, P.D., et al., Forty-eight hours of unloading and 24 h of reloading lead to changes in global gene expression patterns related to ubiquitination and oxidative stress in humans, J. Appl. Physiol., 2010, vol. 109, no. 5, p. 1404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alibegovic, A.C., Sonne, M.P., Højbjerre, L., et al., Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men, Am. J. Physiol.: Endocrinol. Metab., 2010, vol. 299, no. 5, p. 752.

    Google Scholar 

  76. Lammers, G., Poelkens, F., Duijnhoven, N.T.L., et al., Expression of genes involved in fatty acid transport and insulin signaling is altered by physical inactivity and exercise training in human skeletal muscle, Am. J. Physiol.: Endocrinol. Metab., 2012, vol. 303, no. 10, p. e1245.

    CAS  Google Scholar 

  77. Rullman, E., Fernandez-Gonzalo, R., Mekjavić, I.B., et al., MEF2 as upstream regulator of the transcriptome signature in human skeletal muscle during unloading, Am. J. Physiol.: Regul. Integr. Comp. Physiol., 2018, vol. 315, no. 4, p. R799.

    CAS  Google Scholar 

  78. Trevino, M.B., Zhang, X., Standley, R.A., et al., Loss of mitochondrial energetics is associated with poor recovery of muscle function but not mass following disuse atrophy, Am. J. Physiol.: Endocrinol. Metab., 2019, vol. 317, no. 5, p. E899.

    CAS  Google Scholar 

  79. Mahmassani, Z.S., Reidy, P.T., McKenzie, A.I., et al., Age-dependent skeletal muscle transcriptome response to bed rest-induced atrophy, J. Appl. Physiol., 2019, vol. 126, no. 4, p. 894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Standley, R.A., Distefano, G., Trevino, M.B., et al., Skeletal muscle energetics and mitochondrial function are impaired following 10 days of bed rest in older adults, J. Gerontol. A, 2020, vol. 75, no. 9, p. 1744.

    Article  CAS  Google Scholar 

  81. Fernandez-Gonzalo, R., Tesch, P.A., Lundberg, T.R., et al., Three months of bed rest induce a residual transcriptomic signature resilient to resistance exercise countermeasures, FASEB J., 2020, vol. 34, no. 6, p. 7958.

    Article  CAS  PubMed  Google Scholar 

  82. Migliavacca, E., Tay, S.K.H., Patel, H.P., et al., Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human sarcopenia across ethnicities, Nat. Commun., 2019, vol. 10, no. 1, p. 5808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wilkinson, S.B., Phillips, S.M., Atherton, P.J., et al., Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle, J. Physiol., 2008, vol. 586, no. 15, p. 3701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Donges, C.E., Burd, N.A., Duffield, R., et al., Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men, J. Appl. Physiol., 2012, vol. 112, no. 12, p. 1992.

    Article  CAS  PubMed  Google Scholar 

  85. Leppek, K., Das, R., and Barna, M., Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them, Nat. Rev. Mol. Cell Biol., 2018, vol. 19, no. 3, p. 158.

    Article  CAS  PubMed  Google Scholar 

  86. Sinvani, H., Haimov, O., Svitkin, Y., et al., Translational tolerance of mitochondrial genes to metabolic energy stress involves TISU and eIF1-eIF4GI cooperation in start codon selection, Cell Metab., 2015, vol. 21, no. 3, p. 479.

    Article  CAS  PubMed  Google Scholar 

  87. Morita, M., Gravel, S.P., Chénard, V., et al., mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation, Cell Metab., 2013, vol. 18, no. 5, p. 698.

    Article  CAS  PubMed  Google Scholar 

  88. Haimov, O., Sinvani, H., and Dikstein, R., Cap-dependent, scanning-free translation initiation mechanisms, Biochim. Biophys. Acta, Gene Regul. Mech., 2015, vol. 1849, no. 11, p. 1313.

    Article  CAS  Google Scholar 

  89. Elfakess, R. and Dikstein, R., A translation initiation element specific to mRNAs with very short 5′UTR that also regulates transcription, PLoS One, 2008, vol. 3, no. 8, p. e3094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Rudrappa, S.S., Wilkinson, D.J., Greenhaff, P.L., et al., Human skeletal muscle disuse atrophy: effects on muscle protein synthesis, breakdown, and insulin resistance—A qualitative review, Front. Physiol., 2016, vol. 7, p. 361.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Crossland, H., Skirrow, S., Puthucheary, Z.A., et al., The impact of immobilization and inflammation on the regulation of muscle mass and insulin resistance: different routes to similar end-points, J. Physiol., 2019, vol. 597, no. 5, p. 1259.

    Article  CAS  PubMed  Google Scholar 

  92. Bragoszewski, P., Turek, M., and Chacinska, A., Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system, Open Biol., 2017, vol. 7, no. 4, art. ID 170007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lavie, J., De Belvalet, H., Sonon, S., et al., Ubiquitin-dependent degradation of mitochondrial proteins regulates energy metabolism, Cell Rep., 2018, vol. 23, no. 10, p. 2852.

    Article  CAS  PubMed  Google Scholar 

  94. Johnson, M.L., Robinson, M.M., and Nair, S.K., Skeletal muscle aging and the mitochondrion, Trends Endocrinol. Metab., 2013, vol. 24, no. 5, p. 247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Louis, E., Raue, U., Yang, Y., et al., Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle, J. Appl. Physiol., 2007, vol. 103, no. 5, p. 1744.

    Article  CAS  PubMed  Google Scholar 

  96. Harber, M.P., Crane, J.D., Dickinson, J.M., et al., Protein synthesis and the expression of growth-related genes are altered by running in human vastus lateralis and soleus muscles, Am. J. Physiol.: Regul. Integr. Comp. Physiol., 2009, vol. 296, no. 3, p. 708.

    Google Scholar 

  97. Pasiakos, S.M., McClung, H.L., McClung, J.P., et al., Molecular responses to moderate endurance exercise in skeletal muscle, Int. J. Sport Nutr. Exercise Metab., 2010, vol. 20, no. 4, p. 282.

    Article  CAS  Google Scholar 

  98. Stefanetti, R.J., Lamon, S., Wallace, M., et al., Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training, Pflugers Arch., 2015, vol. 467, no. 7, p. 1523.

    Article  CAS  PubMed  Google Scholar 

  99. Møller, A.B., Vendelbo, M.H., Christensen, B., et al., Physical exercise increases autophagic signaling through ULK1 in human skeletal muscle, J. Appl. Physiol., 2015, vol. 118, no. 8, p. 971.

    Article  PubMed  CAS  Google Scholar 

  100. Cunha, T.F., Moreira, J.B.N., Paixão, N.A., et al., Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice, J. Appl. Physiol., 2012, vol. 112, no. 11, p. 1839.

    Article  CAS  PubMed  Google Scholar 

  101. Kim, Y.A., Kim, Y.S., Oh, S.L., et al., Autophagic response to exercise training in skeletal muscle with age, J. Physiol. Biochem., 2013, vol. 69, no. 4, p. 697.

    Article  CAS  PubMed  Google Scholar 

  102. Kim, Y.A., Kim, Y.S., and Song, W., Autophagic response to a single bout of moderate exercise in murine skeletal muscle, J. Physiol. Biochem., 2012, vol. 68, no. 2, p. 229.

    Article  CAS  PubMed  Google Scholar 

  103. Popov, D.V., Lysenko, E.A., Miller, T.F., et al., The effect of single aerobic exercise on the regulation of mitochondrial biogenesis in skeletal muscles of trained men: a time-course study, Hum. Physiol., 2015, vol. 41, no. 3, p. 296.

    Article  CAS  Google Scholar 

  104. Young, J.C., Hoogenraad, N.J., and Hartl, F.U., Molecular chaperones Hsp90 and Hsp70 deliver pre-proteins to the mitochondrial import receptor Tom70, Cell, 2003, vol. 112, no. 1, p. 41.

    Article  CAS  PubMed  Google Scholar 

  105. Evgen’ev, M.B., Garbuz, D.G., and Zatsepina, O.G., Heat shock proteins: functions and role in adaptation to hyperthermia, Russ. J. Dev. Biol., 2005, vol. 36, no. 4, p. 218.

    Article  CAS  Google Scholar 

  106. Williamson, C.L., Dabkowski, E.R., Dillmann, W.H., and Hollander, J.M., Mitochondria protection from hypoxia/reoxygenation injury with mitochondria heat shock protein 70 overexpression, Am. J. Physiol.: Hear. Circ. Physiol., 2008, vol. 294, no. 1, p. 249.

    Google Scholar 

  107. Shepherd, D.L., Hathaway, Q.A., Nichols, C.E., et al., Mitochondrial proteome disruption in the diabetic heart through targeted epigenetic regulation at the mitochondrial heat shock protein 70 (mtHsp70) nuclear locus, J. Mol. Cell. Cardiol., 2018, vol. 119, p. 104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ma, X., Xu, L., Alberobello, A.T., et al., Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional axis, Cell Metab., 2015, vol. 22, no. 4, p. 695.

    Article  CAS  PubMed  Google Scholar 

  109. Takahashi, M., Chesley, A., Freyssenet, D., and Hood, D.A., Contractile activity-induced adaptations in the mitochondrial protein import system, Am. J. Physiol., 1998, vol. 274, no. 5, p. 1380.

    Article  Google Scholar 

  110. Memme, J.M., Slavin, M., Moradi, N., and Hood, D.A., Mitochondrial bioenergetics and turnover during chronic muscle disuse, Int. J. Mol. Sci., 2021, vol. 22, no. 10, p. 5179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jones, S.W., Hill, R.J., Krasney, P.A., et al., Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass, FASEB J., 2004, vol. 18, no. 9, p. 1025.

    Article  CAS  PubMed  Google Scholar 

  112. Gustafsson, T., Osterlund, T., Flanagan, J.N., et al., Effects of 3 days unloading on molecular regulators of muscle size in humans, J. Appl. Physiol., 2010, vol. 109, no. 3, p. 721.

    Article  CAS  PubMed  Google Scholar 

  113. Møller, A.B., Vendelbo, M.H., Schjerling, P., et al., Immobilization decreases foxo3a phosphorylation and increases autophagy-related gene and protein expression in human skeletal muscle, Front. Physiol., 2019, vol. 10, p. 736.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Leermakers, P.A., Kneppers, A.E.M., Schols, A.M.W.J., et al., Skeletal muscle unloading results in increased mitophagy and decreased mitochondrial biogenesis regulation, Muscle Nerve, 2019, vol. 60, no. 6, p. 769.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Singh, K. and Hood, D.A., Effect of denervation-induced muscle disuse on mitochondrial protein import, Am. J. Physiol.: Cell Physiol., 2011, vol. 300, no. 1, p. C138.

    Article  CAS  Google Scholar 

  116. Camera, D.M., Burniston, J.G., Pogson, M.A., et al., Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise, FASEB J., 2017, vol. 31, no. 12, p. 5478.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 21-15-00405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Popov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This work does not contain any studies involving animals or human subjects performed by any of the authors.

CONFLICT OF INTERESTS

The authors declare that they do not have a conflict of interests.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokov, R.O., Popov, D.V. Regulation of Mitochondrial Biogenesis in Human Skeletal Muscles Induced by Aerobic Exercise and Disuse. Hum Physiol 48, 261–270 (2022). https://doi.org/10.1134/S0362119722030033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722030033

Keywords:

Navigation