Skip to main content
Log in

Holism and Reductionism in Physiology

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Today, theoretical physiology needs general philosophical conclusions, which could be based on a quantitative theory of homeostasis. From a unified standpoint, this theory would make it possible to quantitatively compare the reactions of various systems of the body to certain influences and, thus, would reveal ideas about the integrity of the body, its spatiotemporal certainty, and the multifactorial nature of interaction with the environment. It is possible to quantitatively compare the reactions of various body systems to the investigated influences in a single coordinate system through the study of fractal dimensions. In the article, the authors present their views on systems biology based on the methodology of holism. They substantiate the possibility of transition to holism as a promising methodology for physiology and make an attempt to explain why reductionism remains a weak side of the physiology of extreme states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The Newest Philosophical Dictionary.

REFERENCES

  1. Goldberger, A.L., Is the normal heartbeat chaotic or homeostatic? News Physiol. Sci., 1991, vol. 6, p. 87.

    CAS  PubMed  Google Scholar 

  2. Beckers, F., Verheyden, B., and Aubert, A.E., Aging and nonlinear heart rate control in a healthy population, Am. J. Physiol.: Heart Circ. Physiol., 2006, vol. 290, no. 6, p. H2560.

    CAS  Google Scholar 

  3. Deutsch, D., The Fabric of Reality: The Science of Parallel Universes and Its Implications, New York: Penguin, 1998.

    Google Scholar 

  4. Popper, K., Conjectures and Refutations, New York: Routledge & Kegan, 1963.

    Google Scholar 

  5. Nosovsky, A.M., Comparative assessment of the adaptive capabilities of the skeletal system of animals in conditions of hypokinesia and microgravity, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: Skryabin Moscow State Acad. Vet. Med. Biotechnol., 2005.

  6. Nosovsky, A.M., Larina, I.M., and Grigor’ev, A.I., Application of the principle of invariant relations for the development of quantitative methods for assessment of the parameters of homeostasis of the human organism, Tekhnol. Zhivykh Sisit., 2009, vol. 6, no. 5, p. 33.

    Google Scholar 

  7. Glass, L. and Mackey, M.C., From Clocks to Chaos: The Rhythms of Life, Princeton: Princeton Univ. Press, 1988.

    Book  Google Scholar 

  8. Karavaev, A.S., Ishbulatov, Yu. M., Ponomarenko, V.I., et al., Autonomic control is a source of dynamical chaos in the cardiovascular system, Chaos, 2019, vol. 29, no. 12, p. 121101.

    Article  CAS  PubMed  Google Scholar 

  9. Perkiömäki, J.S., Mäkikallio, T.H., and Huikuri, H.V., Fractal and complexity measures of heart rate variability, Clin. Exp. Hypertens., 2005, vol. 27, nos. 2–3, p. 149.

    Article  PubMed  Google Scholar 

  10. Larina, I.M., Bystritskaya, A.F., and Smirnova, T.M., Investigation of the phase character of the adaptation in space flight and model experiments, Materialy mezhdunarodnoi konferentsii “Gipokinezya. Meditsinskie i psikhologicheskie problemy,” 26–28 noyabrya 1997 g., Tezisy dokladov (Proc. Int. conf. “Hypokinesia: Medical and Psychological Problems,” Novoember 26–28, 1997, Abstracts of Papers), Moscow: Nauka, 1997, p. 43.

  11. Larina, I.M., Bystritskaya, A.F., and Smirnova, T.M., Psychophysiological monitoring under conditions of real and simulated microgravity, Hum. Physiol., 1999, vol. 25, no. 5, p. 574.

    CAS  PubMed  Google Scholar 

  12. Bystritskaya, A.F., Larina, I.M., Laziev, S.P., and Smirnova, T.M., Study of the phase structure of the adaptation process in the SFINCSS-99 experiment, in Model’nyi eksperiment s dlitel’noi izolyatsiei: problemy i dostizheniya (A Model Experiment with Long-Term Isolation: Problems and Achievements), Baranov, V.M., Ed., Moscow: Slovo, 2001, p. 345.

  13. Lakota, N.G., Vasin, Yu.A., Larina, I.M., and Demin, E.P., Thermodynamic state of the system “human body-closed medium” during a 240-day isolation in a hermetic chamber, Fiziol. Chel., 2002, vol. 28, no. 5, p. 65.

    CAS  Google Scholar 

  14. Larina, I.M., Bystritskaya, A.F., and Smirnova, T.M., Interaction of feedback mechanisms and the search for an optimal strategy during adaptation to long-term impacts, Materialy III Mezhdunarodnogo kongressa “Slabye i sverkhslabye polya i izlucheniya v biologii i meditsine,” Sankt-Peterburg, 1–4 iyulya 2003 g. (Proc. III Int. Congr. “Weak and Superweak Fields and Radiation in Biology and Medicine,” St. Petersburg, July 1–4, 2003), St. Petersburg, 2003, p. 60.

  15. Larina, I.M., Bystritskaya, A.F., Davydova, N.A., and Smirnova, T.M., Activity of the Sympathoadrenal system during adaptation of the human body to living inside an isolated object, Fiziol. Chel., 2004, vol. 30, no. 1, p. 105.

    CAS  Google Scholar 

  16. Larina, I.M., Smirnova, T.I., Lacota, N.G., and Bystritskaya, A.F., Parameters of thermal homeostasis and psychophysiological monitoring in the evaluation of the phasic structure of adaptation during 240-day isolation, Hum. Physiol., 2005, vol. 31, no. 2, p. 181.

    Article  Google Scholar 

  17. Smirnova, T.M., Krut’ko, V.N., Bystritskaya, A.F., et al., The use of the SOPR-monitoring computer system for the analysis of mental performance in the conditions of normal professional activity and in difficult conditions, Tr. Inst. Sist. Anal., Ross. Akad. Nauk, 2006, vol. 19, p. 156.

    Google Scholar 

  18. Larina, I.M., Smirnova, T.M., and Morukov, B.V., Long-term antiorthostatic hypokinesia stimulates storage of osmotically inactive sodium in the human body, Hum. Physiol., 2008, vol. 34, no. 5, p. 608.

    Article  Google Scholar 

  19. Denton, T.A., Diamond, G.A., Helfant, R.H., et al., Fascinating rhythm: a primer on chaos theory and its application to cardiology, Am. Heart J., 1990, vol. 120, no. 6, p. 1419.

    Article  CAS  PubMed  Google Scholar 

  20. Powell, K., All systems go, J. Cell. Biol., 2004, vol. 165, no. 3, p. 299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bielekova, B., Vodovotz, Y., An, G., and Hallenbeck, J., How implementation of systems biology into clinical trials accelerates understanding of diseases, Front. Neurol., 2014, vol. 5, p. 102.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burggren, W.W. and Monticino, M.G., Assessing physiological complexity, J. Exp. Biol., 2005, vol. 208, no. 17, p. 3221.

    Article  CAS  PubMed  Google Scholar 

  23. Larina, I.M., Kashirina, D.N., Kireev, K.S., and Grigor’ev, A.I., Repeated long-term manned flights: proteomic blood tests of cosmonauts, Aviakosm. Ekol. Med., 2020, vol. 54, no. 5, p. 15.

    Google Scholar 

  24. Prigogine, I. and Stengers, I., Order Out of Chaos: Man’s New Dialogue with Nature, London: Flamingo, 1984.

    Google Scholar 

  25. Haken, H., Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices, Berlin: Springer-Verlag, 1983.

    Book  Google Scholar 

  26. Haken, H., Erfolgsgeheimnisse der Natur: Synergetik, die Lehre vom Zusammenwirken, Berlin: Ullstein, 1990.

    Google Scholar 

  27. Mandelbrot, B.B., Boaz, K., and Amnon, A., Angular gaps in radial diffusion-limited aggregation: two fractal dimensions and nontransient deviations from linear self-similarity, Phys. Rev. Lett., 2002, vol. 88, no. 5, art. ID 055501.

    Article  PubMed  CAS  Google Scholar 

  28. Mandelbrot, B.B., The Fractal Geometry of Nature, San Francisco: W.H. Freeman, 1982.

    Google Scholar 

  29. Hastings, H.M., Pekelney, R., Monticciolo, R., et al., Time scales, persistence and patchiness, Biosystems, 1982, vol. 15, no. 4, p. 281.

    Article  CAS  PubMed  Google Scholar 

  30. Verbanck, S., Weibel, E.R., and Paiva, M., Simulations of washout experiments in postmortem rat lungs, J. Appl. Physiol., 1993, vol. 75, no. 1, p. 441.

    Article  CAS  PubMed  Google Scholar 

  31. Goldberger, A.L., Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease, Perspect. Biol. Med., 1997, vol. 40, no. 4, p. 543.

    Article  CAS  PubMed  Google Scholar 

  32. Binzegger, T., Douglas, R.J., and Martin, K.A., Axons in cat visual cortex are topologically self-similar, Cereb. Cortex, 2005, vol. 15, no. 2, p. 152.

    Article  PubMed  Google Scholar 

  33. Isaeva, V.V., Sinergetika dlya biologov (Synergetics for Biologists), Vladivostok: Dal’nevost. Gos. Univ., 2003, p. 122.

  34. Grigor’ev, A.I. and Larina, I.M., Organization principles of calcium metabolism, Usp. Fiziol. Nauk, 1992, vol. 23, no. 3, p. 24.

    Google Scholar 

  35. Nosovsky, A.M. and Larina, I.M., Fractal relationships of the components of a living organism as the basis of its systemic integrity, Part 1, Biomed. Radioelektron., 2013, no. 3, p. 26.

  36. Nosovsky, A.M., Application of probabilistic models on a circle in biomedical studies, Materialy IX Vsesoyuznoi konferentsii, Kaluga, 19–21 iyunya 1990, Tezisy dokladov (Proc. IX All-Union Conf., Kaluga, June 19–21, 1990, Abstracts of Papers), Grigor’ev, A.I., Ed., Kaluga, 1990, p. 147.

  37. Nosovsky, A.M., Development of the multidimensional scaling method for biomedical studies, Aviakosm. Ekol. Med., 2002, vol. 36, no. 3, p. 62.

    Google Scholar 

  38. Nosovsky, A.M. and Savina, N.V., Fractals in biology and medicine, Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii prepodavatelei, molodykh uchenykh i aspirantov vuzov RF (Proc. Int. Sci.-Pract. Conf. of Teachers, Young Scientists, and Post-Graduate Students of Higher Education Institutions of Russian Federation), Moscow, 2006, p. 123.

  39. Nosovsky, A.M., Application of the principle of invariant relations for the development of quantitative assessment of homeostasis of body systems, Materialy XX S”ezda fiziologicheskogo obshchesva imeni I.P. Pavlova, Moskva, 4–8 iyunya 2007 g. (Proc. XX Congr. of the Pavlov Russian Physiological Society, Moscow, June 4–8, 2007), Moscow, 2007.

  40. Nosovsky, A.M., Larina, I.M., and Grigor’ev, A.I., Application of the principle of invariant relations for the development of quantitative assessment of homeostasis of human organism, Tekhnol. Zhivykh Sist., 2009, vol. 6, no. 5, p. 33.

    Google Scholar 

  41. Larina, I.M., Nosovsky, A.M., and Grigoriev, A.I., Mechanisms of natural variability at adaptation of human physiological systems to conditions of space flight, Hum. Physiol., 2012, vol. 38, no. 2, p. 187.

    Article  Google Scholar 

  42. Nosovsky, A.M. and Larina, I.M., Fractal relationships of the components of a living organism as the basis of its systemic integrity, Part 2, Biomed. Radioelektron., 2013, no. 12, p. 53.

  43. Rogozin, I.B., Babenko, V.N., Fedorova, N.D., et al., Evolution of eukaryotic gene repertoire and gene structure: discovering the unexpected dynamics of genome evolution, Cold Spring Harb. Symp. Quant. Biol., 2003, vol. 68, p. 293.

    Article  CAS  PubMed  Google Scholar 

  44. Claverie, J.M., Abergel, C., Audic, S., and Ogata, H., Recent advances in computational genomics, Pharmacogenomics, 2001, vol. 2, no. 4, p. 361.

    Article  CAS  PubMed  Google Scholar 

  45. Piovesan, A., Antonaros, F., Vitale, L., et al., Human protein-coding genes and gene feature statistics in 2019, BMC Res. Notes, 2019, vol. 12, no. 1, p. 315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Smith, L.M. and Kelleher, N.L., Consortium for top down proteomics. Proteoform: a single term describing protein complexity, Nat. Methods, 2013, vol. 10, no. 3, p. 186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kotolupov, V.A. and Isaeva, V.V., Cells in the system of multicellular organisms from positions of non-linear dynamics, J. Evol. Biochem. Physiol., 2013, vol. 49, no. 2, p. 262.

    Article  Google Scholar 

  48. Varela, M., Ruiz-Esteban, R., and Mestre de Juan, M.J., Chaos, fractals, and our concept of disease, Perspect. Biol. Med., 2010, vol. 53, no. 4, p. 584.

    Article  PubMed  Google Scholar 

  49. Martinez-Lavin, M., Infante, O., and Lerma, C., Hypothesis: the chaos and complexity theory may help our understanding of fibromyalgia and similar maladies, Semin. Arthritis Rheum., 2008, vol. 37, no. 4, p. 260.

    Article  PubMed  Google Scholar 

  50. Martinez-Lavin, M. and Vargas, A., Complex adaptive systems allostasis in fibromyalgia, Rheum. Dis. Clin. North Am., 2009, vol. 35, no. 2, p. 285.

    Article  PubMed  Google Scholar 

  51. Beckers, F., Verheyden, B., and Aubert, A.E., Aging and nonlinear heart rate control in a healthy population, Am. J. Physiol.: Heart Circ. Physiol., 2006, vol. 290, no. 6, p. H2560.

    CAS  Google Scholar 

  52. Vaillancourt, D.E. and Newell, K.M., Changing complexity in human behavior and physiology through aging and disease, Neurobiol. Aging, 2002, vol. 23, no. 1, p. 1.

    Article  PubMed  Google Scholar 

Download references

Funding

The study was carried out within the framework of basic theme of the Russian Academy of Sciences 65.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Larina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.

CONFLICT OF INTERESTS

The authors declare that they have no obvious and potential conflicts of interests related to the publication of this article.

Additional information

Organism is a form that lasts in the flow of exchange L. D. Beklemishev

Translated by L. Solovyova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larina, I.M., Nosovsky, A.M. & Rusanov, V.B. Holism and Reductionism in Physiology. Hum Physiol 48, 346–354 (2022). https://doi.org/10.1134/S036211972201008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211972201008X

Keywords:

Navigation