Skip to main content
Log in

The Association between Emotion Regulation Strategy and Oscillation Balance of Resting State Networks

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The aim was to study the effect of adaptive (cognitive reappraisal) and non-adaptive (expressive suppression, suppression, and rumination) styles of emotion regulation on the balance of connectivity of resting state networks. Fifty-one healthy volunteers (29 women) aged from 18 to 51 years gave their permission to recordings their EEGs at rest and filled in the Emotional Regulation Questionnaire (Gross), White Bear Suppression Inventory and Ruminative Responses Scale. The connectivity measures of resting state networks were evaluated based on EEG data. Networks were identified using the “seed” method. The effects of different styles of emotional regulation on the balance of connectivity of networks were analyzed by regression method. Non-adaptive styles of emotional regulation (suppression and rumination) correlated with the dominance of the default mode network in the right temporal cortex, that could reflect the processes of emotional introspection. The adaptive strategy cognitive reappraisal of emotions correlated with the dominance of task-positive networks in the left dorsolateral prefrontal cortex, such result may be associated with more effective control of negative thoughts and a higher level of positive emotions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aldao, A., Nolen-Hoeksema, S., and Schweizer, S., Emotion-regulation strategies across psychopathology: a meta-analytic review, Clin. Psychol. Rev., 2010, vol. 30, no. 2, p. 217.

    Article  PubMed  Google Scholar 

  2. Gross, J.J., Emotion regulation: affective, cognitive, and social consequences, Psychophysiology, 2002, vol. 39, no. 3, p. 281.

    Article  PubMed  Google Scholar 

  3. Gross, J.J., The emerging field of emotion regulation: an integrative review, Rev. Gen. Psychol., 1998, vol. 2, no. 3, p. 271.

    Article  Google Scholar 

  4. Ray, R.D., McRae, K., Ochsner, K.N., and Gross, J.J., Cognitive reappraisal of negative affect: converging evidence from EMG and self-report, Emotion, 2010, vol. 10, no. 4, p. 587.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shiota, M.N. and Levenson, R.W., Turn down the volume or change the channel? Emotional effects of detached versus positive reappraisal, Pers. Soc. Psychol., 2012, vol. 103, no. 3, p. 416.

    Article  Google Scholar 

  6. Boehme, S., Biehl, S.C., and Muhlberger, A., Effects of differential strategies of emotion regulation, Brain Sci., 2019, vol. 9, no. 9, p. 225.

    Article  PubMed Central  Google Scholar 

  7. Gross, J.J. and John, O.P., Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being, J. Pers. Soc. Psychol., 2003, vol. 85, no. 2, p. 348.

    Article  PubMed  Google Scholar 

  8. Pankratova, A.A. and Kornienko, D.S., A Russian adaptation of the Emotional Regulation Questionnaire (J. Gross), Vopr. Psikhol., 2017, vol. 5, p. 139.

    Google Scholar 

  9. Nolen-Hoeksema, S., Wisco, B.E., and Lyubomirsky, S., Rethinking rumination, Perspect. Psychol. Sci., 2008, vol. 3, no. 5, p. 400.

    Article  PubMed  Google Scholar 

  10. Hamilton, J.P., Furman, D.J., Chang, C., et al., Default-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination, Biol. Psychiatry, 2011, vol. 70, no. 4, p. 327.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Olatunji, B.O., Naragon-Gainey, K., and Wolitzky-Taylor, K.B., Specificity of rumination in anxiety and depression: a multimodal meta-analysis, Clin. Psychol.: Sci. Pract., 2013, vol. 20, no. 3, p. 225.

    Google Scholar 

  12. Nolen-Hoeksema, S., Ruminative coping with depression, in Motivation and Self-Regulation across the Life Span, Heckhausen, J. and Dweck, C.S., Eds., Cambridge: Cambridge Univ. Press, 1998.

    Google Scholar 

  13. Aldao, A. and Nolen-Hoeksema, S., Specificity of cognitive emotion regulation strategies: a transdiagnostic examination, Behav. Res. Ther., 2010, vol. 48, no. 10, p. 974.

    Article  PubMed  Google Scholar 

  14. Rassin, E., The White Bear Suppression Inventory (WBSI) focuses on failing suppression attempts, Eur. J. Pers., 2003, vol. 17, no. 4, p. 285.

    Article  Google Scholar 

  15. Wegner, D.M. and Zanakos, S., Chronic thought suppression, J. Pers., 1994, vol. 62, no. 4, p. 615.

    Article  Google Scholar 

  16. Bressler, S.L. and Menon, V., Large-scale brain networks in cognition: emerging methods and principles, Trends Cognit. Sci., 2010, vol. 14, no. 6, p. 277.

    Article  Google Scholar 

  17. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., et al., A default mode of brain function, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 2, p. 676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buckner, R.L., Andrews-Hanna, J.R., and Schacter, D.L., The brain’s default network: anatomy, function, and relevance to disease, Ann. N.Y. Acad. Sci., 2008, vol. 1124, p. 1.

    Article  PubMed  Google Scholar 

  19. Mason, M.F., Norton, M.I., van Horn, J.D., et al., Wandering minds: the default network and stimulus-independent thought, Science, 2007, vol. 315, no. 5810, p. 393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raichle, M.E., The brain’s default mode network, Annu. Rev. Neurosci., 2015, vol. 38, p. 433.

    Article  CAS  PubMed  Google Scholar 

  21. Rilling, J.K., King-Casas, B., and Sanfey, A.G., The neurobiology of social decision-making, Curr. Opin. Neurobiol., 2008, vol. 18, no. 2, p. 159.

    Article  CAS  PubMed  Google Scholar 

  22. Harrison, B.J., Pujol, J., Ortiz, H., et al., Modulation of brain resting-state networks by sad mood induction, PLoS One, 2008, vol. 3, no. 3, p. 1.

    Article  Google Scholar 

  23. Dailey, N.S., Smith, R., Raikes, A., et al., Reduced functional connectivity in the executive control network following mild traumatic brain injury: implications for emotional regulation, Biol. Psychiatry, 2018, vol. 83, no. 9, p. 162.

    Article  Google Scholar 

  24. Pan, J., Zhan, L., Hu, C., et al., Emotion regulation and complex brain networks: association between expressive suppression and efficiency in the fronto-parietal network and default-mode network, Front. Hum. Neurosci., 2018, vol. 12, p. 70.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Smitha, K.A., Akhil Raja, K., Arun, K.M., et al., Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks, Neuroradiol. J., 2017, vol. 30, no. 4, p. 305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Erk, S., Mikschl, A., Stier, S., et al., Acute and sustained effects of cognitive emotion regulation in major depression, J. Neurosci., 2010, vol. 30, no. 47, p. 15726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnstone, T., van Reekum, C.M., Urry, H.L., et al., Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression, J. Neurosci., 2007, vol. 27, no. 33, p. 8877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sheline, Y.I., Barch, D.M., Price, J.L., et al., The default mode network and self-referential processes in depression, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 6, p. 1942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson, M.K., Nolen-Hoeksema, S., Mitchell, K.J., and Levin, Y., Medial cortex activity, self-reflection and depression, Soc. Cognit. Affective Neurosci., 2009, vol. 4, no. 4, p. 313.

    Article  Google Scholar 

  30. Treynor, W., Gonzalez, R., and Nolen-Hoeksema, S., Rumination reconsidered: a psychometric analysis, Cognit. Ther. Res., 2003, vol. 27, no. 3, p. 247.

    Article  Google Scholar 

  31. Bocharov, A.V., Knyazev, G.G., Savostyanov, A.N., et al., Relationship of depression, anxiety and rumination scores with EEG connectivity of resting state networks, Hum. Physiol., 2021, vol. 47, no. 2, p. 123.

    Article  Google Scholar 

  32. Knyazev G.G., Savostyanov A.N., Bocharov, A.V., et al., Task-positive and task-negative networks and their relation to depression: EEG beamformer analysis, Behav. Brain Res., 2016, vol. 306, p. 160.

    Article  PubMed  Google Scholar 

  33. Knyazev, G.G., Savostyanov, A.N., Bocharov, A.V., et al., Task-positive and task-negative networks in major depressive disorder: a combined fMRI and EEG study, J. Affective Disord., 2018, vol. 235, p. 211.

    Article  Google Scholar 

  34. Brookes, M.J., Liddle, E.B., Hale, J.R., et al., Task induced modulation of neural oscillations in electrophysiological brain networks, NeuroImage, 2012, vol. 63, no. 4, p. 1918.

    Article  CAS  PubMed  Google Scholar 

  35. Brookes, M.J., Woolric, M., Luckhoo, H., et al., Investigating the electrophysiological basis of resting state networks using magnetoencephalography, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 40, p. 16783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seeley, W.W., Menon, V., Schatzberg, A.F., et al., Dissociable intrinsic connectivity networks for salience processing and executive control, J. Neurosci., 2007, vol. 27, no. 9, p. 2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nezlek, J.B. and Kuppens, P., Regulating positive and negative emotions in daily life, J. Pers., 2008, vol. 76, no. 3, p. 561.

    Article  PubMed  Google Scholar 

  38. Hofmann, S.G., Heering, S., Sawyer, A.T., and Asnaani, A., How to handle anxiety: the effects of reappraisal, acceptance, and suppression strategies on anxious arousal, Behav. Res. Ther., 2009, vol. 47, no. 5, p. 389.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kaiser, R.H., Andrews-Hanna, J.R., Wager, T.D., and Pizzagalli, D.A., Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity, JAMA Psychiatry, 2015, vol. 72, no. 6, p. 603.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rive, M.M., van Rooijen, G., Veltman, D.J., et al., Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies, Neurosci. Biobehav. Rev., 2013, vol. 37, no. 10, p. 2529.

    Article  PubMed  Google Scholar 

  41. Zilverstand, A., Parvaz, M.A., and Goldstein, R.Z., Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review, NeuroImage, 2017, vol. 151, p. 105.

    Article  PubMed  Google Scholar 

  42. Iznak, E.V., Iznak, A.F., and Oleichik, I.V., Quantitative EEG in prediction of efficiency of combined antidepressive treatment using transcranial magnetic stimulation, Hum. Physiol., 2020, vol. 46, no. 6, p. 621.

    Article  CAS  Google Scholar 

  43. Pathak, Y., Salami, O., Baillet, S., et al., Longitudinal changes in depressive circuitry in response to neuromodulation therapy, Front. Neural Circuits, 2016, vol. 10, p. 1.

    Article  Google Scholar 

  44. Silvers, J.A., Shu, J., Hubbard, A.D., et al., Concurrent and lasting effects of emotion regulation on amygdala response in adolescence and young adulthood, Dev. Sci., 2016, vol. 18, no. 5, p. 771.

    Article  Google Scholar 

  45. Winecoff, A., LaBar, K.S., Madden, D.J., et al., Cognitive and neural contributors to emotion regulation in aging, Soc. Cognit. Affective Neurosci., 2011, vol. 6, no. 2, p. 165.

    Article  Google Scholar 

  46. Badre, D. and Wagner, A.D., Left ventrolateral prefrontal cortex and the cognitive control of memory, Neuropsychologia, 2007, vol. 45, no. 13, p. 2883.

    Article  PubMed  Google Scholar 

  47. Demaree, H.A., Everhart, D.E., Youngstrom, E.A., and Harrison, D.W., Brain lateralization of emotional processing: historical roots and a future incorporating “dominance,” Behav. Cognit. Neurosci. Rev., 2005, vol. 4, no. 1, p. 3.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to N.V. Dmitrienko for helping gather research data.

Funding

The work was supported by RFBR (project no. 20-013-00404, research conduct; project no. 18-29-13027, article preparation) and federal budget for fundamental research (theme no. АААА-А21-121011990039-2, data analysis method development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bocharov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All studies were conducted in compliance with the principles of biomedical ethics formulated in the Declaration of Helsinki (1964) and its later updates and approved by local bioethical committee of Scientific Research Institute of Neurosciences and Medicine (Novosibirsk).

CONFLICT OF INTEREST

The authors declare no direct or potential conflicts of interest.

INFORMED CONSENT

Each participant gave his voluntary written consent after being explained potential risks and advantages, along with the nature of the forthcoming study.

Additional information

Translated by A. Deryabina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharov, A.V., Savostyanov, A.N., Tamozhnikov, S.S. et al. The Association between Emotion Regulation Strategy and Oscillation Balance of Resting State Networks. Hum Physiol 48, 30–36 (2022). https://doi.org/10.1134/S0362119722010030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722010030

Keywords:

Navigation