Skip to main content
Log in

Motor Control Based on the Internal Representation System on the Earth and in Space

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

In 2020, Inesa Benediktovna Kozlovskaya and Viktor Semenovich Gurfinkel passed away. Their scientific legacy is enormous and will be used repeatedly by researchers in various fields of physiology. The review considers Gurfinkel’ studies focusing on the function of the sensorimotor system on the ground and in microgravity. The studies prompted a review of many previous ideas about the organization of motor control, led to the development of new concepts, and allowed a look at the established positions from a new perspective. Gurfinkel formulated and experimentally verified the idea that the brain forms internal models of its body and environment. This system of internal representation provides for interpretation of sensory signals and modification of the motor responses that the signals elicit. Gurfinkel and colleagues showed additionally that adaptation of sensorimotor systems to weightlessness fundamentally differs from adaptation of other systems, primarily in that the main changes occur at the level of information processes in the internal representation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Bernshtein, N.A., O postroenii dvizhenii (Design of Movements), Moscow: Medgiz, 1947.

  2. Head, H. and Holmes, G., Sensory disturbances from cerebral lesions, Brain, 1911, vol. 34, p. 102.

    Article  Google Scholar 

  3. Critchley, M., Disorders of corporeal awareness, in The Body Percept, Wapner, S. and Werner, H., Eds., New York: Random House, 1965, p. 68.

    Google Scholar 

  4. de Vignemont, F., Body schema and body image—Pros and cons, Neuropsychologia, 2010, vol. 48, no. 3, p. 669.

    Article  PubMed  Google Scholar 

  5. Maravita, A. and Iriki, A., Tools for the body (schema), Trends Cognit. Sci., 2004, vol. 8, no. 2, p. 79.

    Article  Google Scholar 

  6. Gross, Y. and Melzack, R., Body image: dissociation of real and perceived limbs by pressure-cuff ischemia, Exp. Neurol., 1978, vol. 61, no. 3, p. 680.

    Article  CAS  PubMed  Google Scholar 

  7. Gurfinkel’, V.S., Debreva, E.E., and Levik, Yu.S., Role of internal model in the position perception and planning of arm movement, Fiziol. Chel., 1986, vol. 12, no. 5, p. 769.

    Google Scholar 

  8. Gurfinkel, V.S., Levik, Yu.S., Popov, K.E., and Lestienne, F., Egocentric references and human spatial orientation in microgravity. I. Perception of complex tactile stimuli, Exp. Brain Res., 1993, vol. 95, no. 2, p. 339.

    Article  CAS  PubMed  Google Scholar 

  9. Gurfinkel, V.S., Levik, Y.S., and Lebedev, M.A., Immediate and remote postactivation effects in the human motor system, Neurophysiology, 1989, vol. 21, no. 3, p. 247.

    Article  Google Scholar 

  10. Kohnstamm von, O., Demonstration einer katatonieartigen Erscheinung beim Gesunden (Katatonusversuch), Neurol. Zentralbl., 1915, vol. 34, p. 290.

    Google Scholar 

  11. Gurfinkel’, V.S., Levik, Yu.S., and Lebedev, M.A., A concept of body scheme and motor control. The body scheme in the control of pose automatisms, in Intellektual’nye protsessy i ikh modelirovanie. Prostranstvenno-vremennaya organizatsiya (Intelligent Processes and Their Modeling: Spatio-Temporal Organization), Chernavskii, A.V., Ed., Moscow: Nauka, 1991, p. 24.

  12. Gurfinkel, V.S. and Levik, Y.S., Perceptual and automatic aspects of postural body scheme, in Brain and Space, Paillard, J., Ed., Oxford: Oxford Univ. Press, 1991. 147.

    Google Scholar 

  13. Popov, K.E., Smetanin, B.N., Gurfinkel, V.S., et al., Spatial perception and vestibulomotor responses in man, Neurophysiology, 1986, vol. 18, no. 6. 548.

    Article  Google Scholar 

  14. Smetanin, B.N., Popov, K.E., Gurfinkel, V.S., and Shlykov, V.Yu., Effect of movement and illusion of movement on human vestibulomotor response, Neurophysiology, 1988, vol. 20, no. 2, p. 192.

    Article  Google Scholar 

  15. Gurfinkel, V.S., Popov, K.E., Smetanin, B.N., et al., Changes in the direction of vestibulomotor response in the course of adaptation to protracted static head turning in man, Neurophysiology, 1989, vol. 21, no. 2, p. 159.

    Article  Google Scholar 

  16. Gurfinkel, V.S. and Levik, Y.S., The suppression of cervico-ocular response by haptokinetik information about contact with a rigid immobile object, Exp. Brain Res., 1993, vol. 95, no. 2, p. 359.

    Article  CAS  PubMed  Google Scholar 

  17. Levik, Yu.S., Shlykov, V.Yu., Gurfinkel, V.S., and Ivanenko, Yu.P., Eye movements induced by changes in the internal representation of body posture, Hum. Physiol., 2005, vol. 31, no. 5, p. 554.

    Article  Google Scholar 

  18. Holmes, N.P. and Spence, C., The body schema and the multisensory representation(s) of peripersonal space, Cognit. Process., 2004, vol. 5, no. 2, p. 94.

    Article  Google Scholar 

  19. Volcic, R., Maarten, W.A., Wijntjes, E.C., et al., Cross-modal visuo-haptic mental rotation: comparing objects between senses, Exp. Brain Res., 2010, vol. 203, no. 3, p. 621.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuling, I.A., van der Graaff, M.C.W., Brenner, E., and Smeets, J.B.J., Matching locations is not just matching sensory representations, Exp. Brain Res., 2017, vol. 235, no. 2, p. 533.

    Article  PubMed  Google Scholar 

  21. van Beers, R.J., Wolpert, D.M., and Haggard, P., When feeling is more important than seeing in sensorimotor adaptation, Curr. Biol., 2002, vol. 12, no. 10, p. 834.

    Article  CAS  PubMed  Google Scholar 

  22. Volcic, R. and Kappers, A.M.L., Allocentric and egocentric reference frames in the processing of three-dimensional haptic space, Exp. Brain Res., 2008, vol. 188, no. 2, p. 199.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gurfinkel’, V.S. and Levik, Yu.S., Sensory complexes and sensorimotor integration, Hum. Physiol., 1979, vol. 5, no. 3, p. 269.

    PubMed  Google Scholar 

  24. Kireeva, T.B., Levik, Y.S., and Kholmogorova, N.V., Interaction of visual and proprioceptive information in the perception of hand position, Ross. Zh. Biomekh., 2005, vol. 9, no. 2, p. 74.

    Google Scholar 

  25. Holmogorova, N.V. and Levik, Yu.S., Effects of modulations of the visual conditions on subjects’ perception of their own and another person’s hand, Hum. Physiol., 2018, vol. 44, no. 3, p. 300.

    Article  Google Scholar 

  26. Perera, A., Newport, R., and Kenzie, K.J., Changing hands: persistent alterations to body image following brief exposure to multisensory distortions, Exp. Brain Res., 2017, vol. 235, no. 6, p. 1809.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bogdanov, V.A., Gurfinkel’, V.S., and Panfilov, V.E., Changes in a person’s pose during standing in conditions of lower gravity, Biofizika, 1970, vol. 15, no. 1, p. 179.

    CAS  PubMed  Google Scholar 

  28. Terekhov, A.V., Levik, Yu.S., and Solopova, I.A., Mechanisms of reference posture correction in the system of upright posture control, Hum. Physiol., 2007, vol. 33, no. 3, p. 289.

    Article  Google Scholar 

  29. Gurfinkel’, V.S., Pal’tsev, V.I., Fel’dman, A.G., and El’ner, A.M., Changes in some human motor functions after prolonged hypokinesia, in Problemy kosmicheskoi biologii (Space Biology), Moscow: Nauka, 1969, vol. 13, p. 148.

  30. Clément, G., Gurfinkel, V.S., Lestienne, F., et al., Adaptation of postural control to weightlessness, Exp. Brain Res., 1984, vol. 57, no. 1, p. 61.

    Article  PubMed  Google Scholar 

  31. Clément G., Gurfinkel, V.S., Lestienne, F., et al., Changes of posture during transient perturbations in microgravity, Aviat. Space Environ. Med., 1985, vol. 56, no. 7, p. 666.

    PubMed  Google Scholar 

  32. Massion, J., Obadia, A., Gurfinkel, V., et al., Axial synergies under microgravity conditions, J. Vestibular Res., 1993, vol. 3, no. 3, p. 275.

    CAS  Google Scholar 

  33. Roll, J.P., Gilhodes, J.C., Quoniam, C., et al., Sensorimotor and perceptual function of muscle proprioception in microgravity, J. Vestibular Res., 1993, vol. 3, no. 3, p. 259.

    CAS  Google Scholar 

  34. Roll, R., Gilhodes, J.C., Roll, J.P., et al., Proprioceptive information processing in weightlessness, Exp. Brain Res., 1998, vol. 122, no. 4, p. 393.

    Article  CAS  PubMed  Google Scholar 

  35. André-Deshays, C., Israël, I., Charade, O., et al., Gaze control in microgravity. 1. Saccades, pursuit, eye-head coordination, J. Vestibular Res., 1993, vol. 3, no. 3, p. 331.

    Google Scholar 

  36. Israël, I., André-Deshays, C., Charade, O., et al., Gaze control in microgravity. 2. Sequences of saccades toward memorized visual targets, J. Vestibular Res., 1993, vol. 3, no. 3, p. 345.

    Google Scholar 

  37. Clément, G., Berthoz, A., and Popov, K.E., Effects of prolonged weightlessness on horizontal and vertical optokinetic nystagmus and optokinetic after-nystagmus in humans, Exp. Brain Res., 1993, vol. 94, no. 3, p. 456.

    Article  PubMed  Google Scholar 

  38. Clément, G., Vieville, T., Lestienne, F., and Berthoz, A., Modification of gain asymmetry and beating field of vertical optokinetic nystagmus in microgravity, Neurosci. Lett., 1986, vol. 63, no. 3, p. 271.

    Article  PubMed  Google Scholar 

  39. Gurfinkel, V.S., Levik, Yu.S., Popov, K.E., et al., Egocentric references and human spatial orientation in microgravity. II. Body-centered coordinates in the task of drawing ellipses with prescribed orientation, Exp. Brain Res., 1993, vol. 95, no. 2, p. 343.

    Article  CAS  PubMed  Google Scholar 

  40. Papaxanthis, C., Pozzo, T., Popov, K.E., and McIntyre, J., Hand trajectories of vertical arm movements in one-G and zero-G environments. Evidence for a central representation of gravitational force, Exp. Brain Res., 1998, vol. 120, no. 4, p. 496.

    Article  CAS  PubMed  Google Scholar 

  41. Lipshits, M.I., Gurfinkel’, E.V., Matsakis, I., and Lest’en, F., Influence of weightlessness on sensorimotor interaction during operator activity: proprioceptive feedbacks, Aviakosm. Ekol. Med., 1993, vol. 27, no. 1, p. 26.

    CAS  Google Scholar 

  42. Lipshits, M.I., Makintair, D., and Polyakov, A.V., The influence of weightlessness on the reproduction of a particular position in various operating modes of the handle, in Problemy neirokibernetiki (Neurocybernetics), Rostov-on-Don, 1999, p. 96.

    Google Scholar 

  43. Lipshits, M.I., Gurfinkel’, E.V., Matsakis, I., and Lest’en, F., Influence of weightlessness on sensorimotor interaction during operator activity: visual feedback and latent time of motor response, Aviakosm. Ekol. Med., 1993, vol. 27, no. 1, p. 22.

    CAS  Google Scholar 

  44. Lipshits, M. and McIntyre, J., Haptic perception in weightlessness: a sense of force or effort? Proc. 12th Man in Space Symp., June 8–13, 1997, Abstracts of Papers, Washington, 1997, p. 36.

  45. Popov, K.E., Roll’, R., Lipshits, M.I., et al., Errors in targeted hand movements during orbital flight, Aviakosm. Ekol. Med., 1999, vol. 33, no. 2, p. 3.

    CAS  Google Scholar 

  46. Roll, R., Popov, K., and Roll, J.-P., Adaptation of goal-directed movements in microgravity, Proc. Int. Symp. “International Scientific Cooperation Onboard “MIR,” Lyon, France, March 9–21, 2001, Lyon, 2001, p. 165.

  47. Semjen, A., Leone, G., and Lipshits, M., Motor timing under microgravity, Acta Astronaut., 1998, vol. 42, nos. 1–8, p. 303.

  48. Leone, G., Berthoz, A., Lipshits, M., and Gur-finkel, V., Influence of graviceptives cues at different level of visual information processing: the effect of prolonged weightlessness, Acta Astronaut., 1995, vol. 36, nos. 8–12, p. 743.

    Article  CAS  PubMed  Google Scholar 

  49. Leone, G., De Schonen, S., and Lipshits, M., Prolonged weightlessness, reference frames and visual symmetry detection, Acta Astronaut., 1998, vol. 42, nos. 1–8, p. 281.

  50. Leone, G., Berthoz, A., Lipshits, M., and Gurfinkel, V., Is there an effect of weightlessness on mental rotation of three-dimensional objects? Cognit. Brain Res., 1995, vol. 2, no. 4, p. 255.

    Article  CAS  Google Scholar 

  51. Lipshits, M.I., Leon, Zh., Gurfinkel’, V.S., and Bertoz, A., The influence of weightlessness on the inertia of mental tracking of moving objects, Aviakosm. Ekol. Med., 1995, vol. 29, no. 5, p. 20.

    CAS  Google Scholar 

  52. Lipshits, M. and McIntyre, J., Gravity affects the preferred vertical and horizontal in visual perception of orientation, Neuro Rep., 1999, vol. 10, no. 5, p. 1085.

    CAS  Google Scholar 

  53. Lipshits, M., Gurfinkel, E., McIntyre, J., et al., Influence of weightlessness on haptic perception, Proc. 5th European Symp. “Life Sciences Research in Space,” Arcachon, France, September 26–October 1, 1993, Paris: European Space Agency, 1994, no. ESA SP-366, p. 367.

  54. McIntyre, J., Lipshits, M., Zaoui, M., et al., Internal reference frames for representation and storage of visual information: the role of gravity, Acta Astronaut., 2001, vol. 49, nos. 3–10, p. 111.

  55. Vidal, M., McIntyre, J., Berthoz, A., and Lipshits, M., Gravity and spatial orientation in virtual 3d-mazes, J. Vestibular Res., 2003, vol. 13, nos. 4–6, p. 273.

    Google Scholar 

  56. De Saedeleer, C., Bengoetxea, A., Cebolla, A.M., et al., Weightlessness alters up/down asymmetries in the perception of self-motion, Exp. Brain Res., 2013, vol. 226, no. 1, p. 95.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-015-00222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Levik.

Ethics declarations

Conflict of interests. The author declares that he has no conflict of interest.

This work did not involve animals or human subjects.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levik, Y.S. Motor Control Based on the Internal Representation System on the Earth and in Space. Hum Physiol 47, 335–351 (2021). https://doi.org/10.1134/S0362119721030099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119721030099

Keywords:

Navigation