Skip to main content
Log in

The Role of Gap Junctions in Endothelial–Stromal Cell Interactions

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Gap junctions are one of the most highly specialized intercellular communications providing not only electrical coupling but also metabolic cooperation between cells due to the direct exchange of cytoplasmic components. Interaction of the endothelial and stromal cells through gap junctions significantly contributes to the control of the state of the vascular wall, as well as to the regulation of homeostasis of other tissues both under physiological and pathological conditions. This review summarizes the modern data on homocellular gap junctions in endothelial cells and stromal progenitors of different commitment, as well as on the role of heterocellular communication in the interplay of these cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Krutovskikh, V.A., Role of intercellular gap junction contacts in genesis of cancer and other pathological conditions, Arkh. Patol., 2000, vol. 62, no. 1, p. 3.

    CAS  Google Scholar 

  2. Kumar, N.M. and Gilula, N.B., The gap junction communication channel, Cell, 1996, vol. 84, no. 3, p. 381.

    Article  CAS  PubMed  Google Scholar 

  3. Willecke, K., Eiberger, J., Degen, J., et al., Structural and functional diversity of connexin genes in the mouse and human genome, Biol. Chem., 2002, vol. 383, no. 5, p. 725.

    Article  CAS  PubMed  Google Scholar 

  4. Caplan, A.I. and Bruder, S.P., Mesenchymal stem cells: building blocks for molecular medicine in the 21st century, Trends Mol. Med., 2001, vol. 7, no. 6, p. 259.

    Article  CAS  PubMed  Google Scholar 

  5. Kalinina, N.I., Sysoeva, V.Yu., Rubina, K.A., et al., Mesenchymal stem cells in tissue growth and repair, Acta Nat., 2011, vol. 3, no. 4 (11), p. 30.

  6. Lykov, A.P., Bondarenko, N.A., Sakhno, L.V., et al., The impact of secretory factors endothelial cells on the functional activity of human multipotent mesenchymal stromal cells, Fundam. Issled., 2014, vol. 2, no. 4, p. 296.

    Google Scholar 

  7. Goodenough, D.A. and Paul, D.L., Beyond the gap: functions of unpaired connexon channels, Nat. Rev. Mol. Cell Biol., 2003, vol. 4, no. 4, p. 285.

    Article  CAS  PubMed  Google Scholar 

  8. Cottrell, G.T. and Burt, J.M., Functional consequences of heterogeneous gap junction channel formation and its influence in health and disease, Biochim. Biophys. Acta, Biomembr., 2005, vol. 1711, no. 2, p. 126.

    Article  CAS  Google Scholar 

  9. Valiunas, V., Doronin, S., Valiuniene, L., et al., Human mesenchymal stem cells make cardiac connexins and form functional gap junctions, J. Physiol., 2004, vol. 555, no. 3, p. 617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Batra, N., Kar, R., and Jiang, J.X., Gap junctions and hemichannels in signal transmission, function and development of bone, Biochim. Biophys. Acta, Biomembr., 2012, vol. 1818, no. 8, p. 1909.

    Article  CAS  Google Scholar 

  11. Genet, N., Bhatt, N., Bourdieu, A., et al., Multifaceted roles of connexin 43 in stem cell niches, Curr. Stem Cell Rep., 2018, vol. 4, no. 1, p. 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, D.G., Zhang, F.X., Chen, M.L., et al., Cx43 in mesenchymal stem cells promotes angiogenesis of the infarcted heart independent of gap junctions, Mol. Med. Rep., 2014, vol. 9, no. 4, p. 1095.

    Article  CAS  PubMed  Google Scholar 

  13. Li, K., Chi, Y., Gao, K., et al., Connexin43 hemichannel-mediated regulation of connexin43, PLoS One, 2013, vol. 8, no. 2, p. e58057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kameritsch, P., Pogoda, K., and Pohl, U., Channel-independent influence of connexin 43 on cell migration, Biochim. Biophys. Acta, Biomembr., 2012, vol. 1818, no. 8, p. 1993.

    Article  CAS  Google Scholar 

  15. Stains, J.P. and Civitelli, R., Gap junctions in skeletal development and function, Biochim. Biophys. Acta, Biomembr., 2005, vol. 1719, nos. 1–2, p. 69.

    Article  CAS  Google Scholar 

  16. Eugenin, E.A., Basilio, D., Sáez, J.C., et al., The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system, J. Neuroimmune Pharmacol., 2012, vol. 7, no. 3, p. 499.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Plotkin, L.I., Connexin 43 hemichannels and intracellular signaling in bone cells, Front. Physiol., 2014, vol. 5, p. 131.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Defranco, B.H., Nickel, B.M., Baty, C.J., et al., Migrating cells retain gap junction plaque structure and function, Cell Commun. Adhes., 2008, vol. 15, no. 3, p. 273.

    Article  CAS  PubMed  Google Scholar 

  19. Goodenough, D.A. and Paul, D.L., Gap junctions, Cold Spring Harb. Perspect. Biol., 2009, vol. 1, no. 1, p. a002576.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang, S.L., Hsu, M.K., and Chan, C.C., Effects of submicrometer particle compositions on cytokine production and lipid peroxidation of human bronchial epithelial cells, Environ. Health Perspect., 2003, vol. 111, no. 4, p. 478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fernandez-Cobo, M., Gingalewski, C., Drujan, D., et al., Downregulation of connexin 43 gene expression in rat heart during inflammation. The role of tumour necrosis factor, Cytokine, 1999, vol. 11, no. 3, p. 216.

    Article  CAS  PubMed  Google Scholar 

  22. Zvalova, D., Cordier, J., Mesnil, M., et al., p38/SAPK2 controls gap junction closure in astrocytes, Glia, 2004, vol. 46, no. 3, p. 323.

    Article  PubMed  Google Scholar 

  23. Hossain, M.Z. and Boynton, A.L., Regulation of Cx43 gap junctions: the gatekeeper and the password, Sci. STKE, 2000, vol. 2000, no. 54, p. pe1.

    Article  CAS  PubMed  Google Scholar 

  24. Lampe, P.D., TenBroek, E.M., Burt, J.M., et al., Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication, J. Cell Biol., 2000, vol. 149, no. 7, p. 1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Le, A.C.N. and Musil, L.S., A novel role for FGF and extracellular signal-regulated kinase in gap junction–mediated intercellular communication in the lens, J. Cell Biol., 2001, vol. 154, no. 1, p. 197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schweitzer, J.S., Wang, H., Xiong, Z.Q., et al., pH Sensitivity of non-synaptic field bursts in the dentate gyrus, J. Neurophysiol., 2000, vol. 84, no. 2, p. 927.

    Article  CAS  PubMed  Google Scholar 

  27. González-Nieto, D., Gómez-Hernández, J.M., Larrosa, B., et al., Regulation of neuronal connexin-36 channels by pH, Proc. Natl Acad. Sci. U.S.A., 2008, vol. 105, no. 44, p. 17169.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Connors, B.W. and Long, M.A., Electrical synapses in the mammalian brain, Annu. Rev. Neurosci., 2004, vol. 27, p. 393.

    Article  CAS  PubMed  Google Scholar 

  29. Rimkute, L., Kraujalis, T., Snipas, M., et al., Modulation of connexin-36 gap junction channels by intracellular pH and magnesium ions, Front. Physiol., 2018, vol. 9, p. 362.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Abed, A., Toubas, J., Kavvadas, P., et al., Targeting connexin 43 protects against the progression of experimental chronic kidney disease in mice, Kidney Int., 2014, vol. 86, no. 4, p. 768.

    Article  CAS  PubMed  Google Scholar 

  31. Tsang, H., Leiper, J., Lao, K.H., et al., Role of asymmetric methylarginine and connexin 43 in the regulation of pulmonary endothelial function, Pulm. Circ., 2013, vol. 3, no. 3, p. 675.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lu, W.-H., Hsieh, K.-S., Lu, P.-J., et al., Different impacts of α- and β-blockers in neurogenic hypertension produced by brainstem lesions in rat, Anesthesiology, 2014, vol. 120, no. 5, p. 1192.

    Article  CAS  PubMed  Google Scholar 

  33. Leybaert, L., Lampe, P.D., Dhein, S., et al., Connexins in cardiovascular and neurovascular health and disease: pharmacological implications, Pharmacol. Rev., 2017, vol. 69, no. 4, p. 396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aasen, T., Connexins: junctional and non-junctional modulators of proliferation, Cell Tissue Res., 2015, vol. 360, no. 3, p. 685.

    Article  CAS  PubMed  Google Scholar 

  35. Vinken, M., Introduction: connexins, pannexins and their channels as gatekeepers of organ physiology, Cell. Mol. Life Sci., 2015, vol. 72, no. 15, p. 2775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aasen, T., Johnstone, S., Vidal-Brime, L., et al., Connexins: synthesis, post-translational modifications, and trafficking in health and disease, Int. J. Mol. Sci., 2018, vol. 19, no. 5, p. 1296.

    Article  PubMed Central  CAS  Google Scholar 

  37. Esseltine, J.L. and Laird, D.W., Next-generation connexin and pannexin cell biology, Trends Cell Biol., 2016, vol. 26, no. 12, p. 944.

    Article  CAS  PubMed  Google Scholar 

  38. Hernandez, V.H., Bortolozzi, M., Pertegato, V., et al., Unitary permeability of gap junction channels to second messengers measured by FRET microscopy, Nat. Methods, 2007, vol. 4, no. 4, p. 353.

    Article  CAS  PubMed  Google Scholar 

  39. Hong, X., Sin, W.C., Harris, A.L., et al., Gap junctions modulate glioma invasion by direct transfer of microR-NA, Oncotarget, 2015, vol. 6, no. 17, p. 15566.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lemcke, H., Steinhoff, G., and David, R., Gap junctional shuttling of miRNA—A novel pathway of intercellular gene regulation and its prospects in clinical application, Cell. Signaling, 2015, vol. 27, no. 12, p. 2506.

    Article  CAS  Google Scholar 

  41. Brink, P.R., Valiunas, V., Gordon, C., et al., Can gap junctions deliver? Biochim. Biophys. Acta, Biomembr., 2012, vol. 1818, no. 8, p. 2076.

    Article  CAS  Google Scholar 

  42. Godo, S. and Shimokawa, H., Endothelial functions, Arterioscler., Thromb., Vasc. Biol., 2017, vol. 37, no. 9, p. e108.

    Article  CAS  Google Scholar 

  43. Reglero-Real, N., Marcos-Ramiro, B., and Millán, J., Endothelial membrane reorganization during leukocyte extravasation, Cell. Mol. Life Sci., 2012, vol. 69, no. 18, p. 3079.

    Article  CAS  PubMed  Google Scholar 

  44. Larson, D.M., Haudenschild, C.C., and Beyer, E.C., Gap junction messenger RNA expression by vascular wall cells, Circ. Res., 1990, vol. 66, no. 4, p. 1074.

    Article  CAS  PubMed  Google Scholar 

  45. Okamoto, T., Akiyama, M., Takeda, M., et al., Connexin32 is expressed in vascular endothelial cells and participates in gap-junction intercellular communication, Biochem. Biophys. Res. Commun., 2009, vol. 382, p. 264.

    Article  CAS  PubMed  Google Scholar 

  46. Simon, A.M. and McWhorter, A.R., Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40, Dev. Biol., 2002, vol. 251, no. 2, p. 206.

    Article  CAS  PubMed  Google Scholar 

  47. Inai, T. and Shibata, Y., Heterogeneous expression of endothelial connexin (Cx) 37, Cx40, and Cx43 in rat large veins, Anat. Sci. Int., 2009, vol. 84, no. 3, p. 237.

    Article  PubMed  Google Scholar 

  48. Ebong, E.E., Kim, S., and DePaola, N., Flow regulates intercellular communication in HAEC by assembling functional Cx40 and Cx37 gap junctional channels, Am. J. Physiol.: Heart Circ. Physiol., 2006, vol. 290, no. 5, p. H2015.

    CAS  Google Scholar 

  49. Appukuttan, S. and Manchanda, R., Independence of AP propagation velocity to transjunctional voltage dependence of gap junctional coupling, Proc. 2015 Int. Conf. on Biomedical Engineering and Computational Technologies (SIBIRCON), October 28–30, 2015, Piscataway, NJ: Inst. Electr. Electron. Eng., 2015, p. 160.

  50. van Rijen, H.V.M., van Kempen, M.J., Postma, S., et al., Tumour necrosis factor α alters the expression of connexin43, connexin40, and connexin37, in human umbilical vein endothelial cells, Cytokine, 1998, vol. 10, no. 4, p. 258.

    Article  CAS  PubMed  Google Scholar 

  51. Wang, H.H., Kung, C.I., Tseng, Y.Y., et al., Activation of endothelial cells to pathological status by down-regulation of connexin43, Cardiovasc. Res., 2008, vol. 79, no. 3, p. 509.

    Article  CAS  PubMed  Google Scholar 

  52. Bacharach, E., Itin, A., and Keshet, E., In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, no. 22, p. 10686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, H., Cao, Y., Yang, X., et al., ADAMTS13 controls vascular remodeling by modifying VWF reactivity during stroke recovery, Blood, 2017, vol. 130, no. 1, p. 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Gärtner, C., Ziegelhöffer, B., Kostelka, M., et al., Knock-down of endothelial connexins impairs angiogenesis, Pharmacol. Res., 2012, vol. 65, no. 3, p. 347.

    Article  PubMed  CAS  Google Scholar 

  55. Kizana, E., Cingolani, E., and Marban, E., Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells, Gene Ther., 2009, vol. 16, no. 9, p. 1163.

    Article  CAS  PubMed  Google Scholar 

  56. Buravkova, L.B., Andreeva, E.R., and Grigoriev, A.I., The impact of oxygen in physiological regulation of human multipotent mesenchymal cell functions, Hum. Physiol., 2012, vol. 38, no. 4, p. 444.

    Article  CAS  Google Scholar 

  57. Murphy, M.B., Moncivais, K., and Caplan, A.I., Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine, Exp. Mol. Med., 2013, vol. 45, no. 11, p. e54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Caplan, A.I., Mesenchymal stem cells in regenerative medicine, in Principles of Regenerative Medicine, Amsterdam: Elsevier, 2019, ch. 14, p. 219.

    Google Scholar 

  59. Kikuchi-Taura, A., Okinaka, Y., Takeuchi, Y., et al., Bone marrow mononuclear cells activate angiogenesis via gap junction-mediated cell-cell interaction, Stroke, 2020, vol. 51, no. 4, p. 1279.

    Article  CAS  PubMed  Google Scholar 

  60. Brisset, A.C., Isakson, B.E., and Kwak, B.R., Connexins in vascular physiology and pathology, Antioxid. Redox Signaling, 2009, vol. 11, no. 2, p. 267.

    Article  CAS  Google Scholar 

  61. Caplan, A.I., All MSCs are pericytes? Cell Stem Cell., 2008, vol. 3, no. 3, p. 229.

    Article  CAS  PubMed  Google Scholar 

  62. Rönnbäck, C. and Hansson, E., Gap junction coupled cells, barriers and systemic inflammation, Int. J. Ophthalmol.: Open Access, 2017, vol. 2, no. 1, p. 7.

    Google Scholar 

  63. Peppiatt, C.M., Howarth, C., Mobbs, P., et al., Bidirectional control of CNS capillary diameter by pericytes, Nature, 2006, vol. 443, no. 7112, p. 700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ivanova, E., Kovacs-Oller, T., and Sagdullaev, B.T., Vascular pericyte impairment and connexin43 gap junction deficit contribute to vasomotor decline in diabetic retinopathy, J. Neurosci., 2017, vol. 37, no. 32, p. 7580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He, D.S., Jiang, J.X., Taffet, S.M., et al., Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 11, p. 6495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Andreeva, E.R., Serebryakov, V.N., and Orekhov, A.N., Gap junctional communication in primary culture of cells derived from human aortic intima, Tissue Cell, 1995, vol. 27, no. 5, p. 591.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, L.J., Liu, W.D., Zhang, L., et al., Enhanced expression of Cx43 and gap junction communication in vascular smooth muscle cells of spontaneously hypertensive rats, Mol. Med. Rep., 2016, vol. 14, no. 5, p. 4083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gairhe, S., Bauer, N.N., Gebb, S.A., et al., Serotonin passes through myoendothelial gap junctions to promote pulmonary arterial smooth muscle cell differentiation, Am. J. Physiol.: Lung Cell Mol. Physiol., 2012, vol. 303, no. 9, p. L767.

    CAS  Google Scholar 

  69. Gao, Y., Chen, T., and Raj, J.U., Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension, Am. J. Res. Cell Mol. Biol., 2016, vol. 54, no. 4, p. 451.

    Article  CAS  Google Scholar 

  70. Skiöldebrand, E., Thorfve, A., Björklund, U., et al., Biochemical alterations in inflammatory reactive chondrocytes: evidence for intercellular network communication, Heliyon, 2018, vol. 4, no. 1, p. e00525.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mayan, M.D., Gago-Fuentes, R., Carpintero-Fernandez, P., et al., Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis, Ann. Rheum. Dis., 2015, vol. 74, no. 1, p. 275.

    Article  CAS  PubMed  Google Scholar 

  72. Wiesner, M., Berberich, O., Hoefner, C., et al., Gap junctional intercellular communication in adipose-derived stromal/stem cells is cell density-dependent and positively impacts adipogenic differentiation, J. Cell. Physiol., 2018, vol. 233, no. 4, p. 3315.

    Article  CAS  PubMed  Google Scholar 

  73. Lin, F., Zheng, G.Z., Chang, B.O., et al., Connexin 43 modulates osteogenic differentiation of bone marrow stromal cells through GSK-3beta/beta-catenin signaling pathways, Cell. Physiol. Biochem., 2018, vol. 47, no. 1, p. 161.

    Article  CAS  PubMed  Google Scholar 

  74. Talbot, J., Brion, R., Lamora, A., et al., Connexin43 intercellular communication drives the early differentiation of human bone marrow stromal cells into osteoblasts, J. Cell. Physiol., 2018, vol. 233, no. 2, p. 946.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, C., Li, Y., Chen, J., et al., Bone marrow stromal cells upregulate expression of bone morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin after stroke in rats, Neuroscience, 2006, vol. 141, no. 2, p. 687.

    Article  CAS  PubMed  Google Scholar 

  76. Mori, R., Power, K.T., Wang, C.M., et al., Acute downregulation of connexin43 at wound sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration, J. Cell Sci., 2006, vol. 119, no. 24, p. 5193.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, X.F. and Cui, X., Connexin 43: key roles in the skin, Biomed. Rep., 2017, vol. 6, no. 6, p. 605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tarzemany, R., Jiang, G., Larjava, H., and Häkkinen, L., Expression and function of connexin 43 in human gingival wound healing and fibroblasts, PLoS One, 2015, vol. 10, no. 1, p. e0115524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Matsuuchi, L. and Naus, C.C., Gap junction proteins on the move: connexins, the cytoskeleton and migration, Biochim. Biophys. Acta, Biomembr., 2013, vol. 1828, no. 1, p. 94.

    Article  CAS  Google Scholar 

  80. Hesketh, G.G., van Eyk, J.E., and Tomaselli, G.F., Mechanisms of gap junction traffic in health and disease, J. Cardiovasc. Pharmacol., 2009, vol. 54, no. 4, p. 263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Boengler, K. and Schulz, R., Connexin 43 and mitochondria in cardiovascular health and disease, in Mitochondrial Dynamics in Cardiovascular Medicine, Adv. Exp. Med. Biol. Ser., vol. 982, New York: Springer-Verlag, 2017, p. 227.

  82. Wright, C.S., van Steensel, M.A., Hodgins, M.B., and Martin, P.E., Connexin mimetic peptides improve cell migration rates of human epidermal keratinocytes and dermal fibroblasts in vitro, Wound Repair Regener., 2009, vol. 17, no. 2, p. 240.

    Article  Google Scholar 

  83. Coutinho, P., Qiu, C., Frank, S., Tamber, K., et al., Dynamic changes in connexin expression correlate with key events in the wound healing process, Cell Biol. Int., 2003, vol. 27, no. 7, p. 525.

    Article  CAS  PubMed  Google Scholar 

  84. Wang, M., Berthoud, V.M., and Beyer, E.C., Connexin43 increases the sensitivity of prostate cancer cells to TNFα-induced apoptosis, J. Cell Sci., 2007, vol. 120, no. 2, p. 320.

    Article  CAS  PubMed  Google Scholar 

  85. Brandner, J.M., Houdek, P., Hüsing, B., et al., Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing, J. Invest. Dermatol., 2004, vol. 122, no. 5, p. 1310.

    Article  CAS  PubMed  Google Scholar 

  86. Mustoe, T., Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy, Am. J. Surg., 2004, vol. 187, no. 5, p. S65.

    Article  CAS  Google Scholar 

  87. Abdullah, K.M., Luthra, G., Bilski, J.J., et al., Cell-to-cell communication and expression of gap junctional proteins in human diabetic and nondiabetic skin fibroblasts, Endocrine, 1999, vol. 10, no. 1, p. 35.

    Article  CAS  PubMed  Google Scholar 

  88. Schajnovitz, A., Itkin, T., D’Uva, G., et al., CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions, Nat. Immunol., 2011, vol. 12, no. 5, p. 391.

    Article  CAS  PubMed  Google Scholar 

  89. Dhein, S., Gap junction channels in the cardiovascular system: pharmacological and physiological modulation, Trends Pharmacol. Sci., 1998, vol. 19, no. 6, p. 229.

    Article  CAS  PubMed  Google Scholar 

  90. Duling, B.R. and Berne, R.M., Longitudinal gradients in periarteriolar oxygen tension: a possible mechanism for the participation of oxygen in local regulation of blood flow, Circ. Res., 1970, vol. 27, no. 5, p. 669.

    Article  CAS  PubMed  Google Scholar 

  91. Christ, G.J., Modulation of α1-adrenergic contractility in isolated vascular tissues by heptanol: a functional demonstration of the potential importance of intercellular communication to vascular response generation, Life Sci., 1995, vol. 56, no. 10, p. 709.

    Article  CAS  PubMed  Google Scholar 

  92. Little, T.L., Xia, J., and Duling, B.R., Dye tracers define differential endothelial and smooth muscle coupling patterns within the arteriolar wall, Circ. Res., 1995, vol. 76, no. 3, p. 498.

    Article  CAS  PubMed  Google Scholar 

  93. Mariotti, M. and Maier, J.A.M., Angiogenesis: an overview, in New Frontiers in Angiogenesis, Dordrecht: Springer-Verlag, 2006, p. 1.

    Google Scholar 

  94. Steiner, D., Lampert, F., Stark, G.B., et al., Effects of endothelial cells on proliferation and survival of human mesenchymal stem cells and primary osteoblasts, J. Orthop. Res., 2012, vol. 30, no. 10, p. 1682.

    Article  PubMed  Google Scholar 

  95. Li, J., Lampert, F., Stark, G.B., and Finkenzeller, G., Transcriptional profiling reveals crosstalk between mesenchymal stem cells and endothelial cells promoting prevascularization by reciprocal mechanisms, Stem Cells Dev., 2015, vol. 24, no. 5, p. 610.

    Article  CAS  PubMed  Google Scholar 

  96. De Moor, L., Merovci, I., Baetens, S., et al., High-throughput fabrication of vascularized spheroids for bioprinting, Biofabrication, 2018, vol. 10, no. 3, art. ID 035009.

    Article  PubMed  CAS  Google Scholar 

  97. Ma, J., van den Beucken, J.J., Yang, F., et al., Coculture of osteoblasts and endothelial cells: optimization of culture medium and cell ratio, Tissue Eng., Part C, 2011, vol. 17, no. 3, p. 349.

    CAS  Google Scholar 

  98. Villars, F., Guillotin, B., Amedee, T., et al., Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication, Am. J. Physiol.: Cell Physiol., 2002, vol. 282, no. 4, p. C775.

    Article  CAS  Google Scholar 

  99. Grellier, M., Bordenave, L., and Amedee, J., Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering, Trends Biotechnol., 2009, vol. 27, no. 10, p. 562.

    Article  CAS  PubMed  Google Scholar 

  100. Islam, M.N., Das, S.R., Emin, M.T., et al., Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury, Nat. Med., 2012, vol. 18, no. 5, p. 759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sinclair, K.A., Yerkovich, S.T., Hopkins, P.M.A., and Chambers, D.C., Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung, Stem Cell Res. Ther., 2016, vol. 7, no. 1, p. 91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Zhang, J., Niu, C., Ye, L., et al., Identification of the haematopoietic stem cell niche and control of the niche size, Nature, 2003, vol. 425, no. 6960, p. 836.

    Article  CAS  PubMed  Google Scholar 

  103. Calvi, L.M., Adams, G.B., Weibrecht, K.W., et al., Osteoblastic cells regulate the haematopoietic stem cell niche, Nature, 2003, vol. 425, no. 6960, p. 841.

    Article  CAS  PubMed  Google Scholar 

  104. Correia, C., Grayson, W.L., Park, M., et al., In vitro model of vascularized bone: synergizing vascular development and osteogenesis, PLoS One, 2011, vol. 6, no. 12, p. e28352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Villars, F., Guillotin, B., Amedee, T., et al., Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication, Am. J. Physiol.: Cell Physiol., 2002, vol. 282, no. 4, p. C775.

    Article  CAS  Google Scholar 

  106. Guillotin, B., Bareille, R., Bourget, C., et al., Interaction between human umbilical vein endothelial cells and human osteoprogenitors triggers pleiotropic effect that may support osteoblastic function, Bone, 2008, vol. 42, no. 6, p. 1080.

    Article  CAS  PubMed  Google Scholar 

  107. Herzog, D.P.E., Dohle, E., Bischoff, I., and Kirkpatrick, C.J., Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts, Biomed Res. Int., 2014, vol. 2014, p. 320123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Villars, F., Guillotin, B., Amedee, T., et al., Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication, Am. J. Physiol.: Cell Physiol., 2002, vol. 282, no. 4, p. C775.

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by the Russian Foundation for Basic Research (RFBR) (project number 20-015-00075) and the program of the President of the Russian Federation for State Support of Young Scientists–Candidates of Sciences (project no. MK-808.2020.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Andreeva.

Ethics declarations

The authors declare no obvious and potential conflicts of interest related to the publication of this article. This article does not contain any studies involving animals or human participants performed by the author.

CONFLICT OF INTERESTThe authors declare no obvious and potential conflicts of interest related to the publication of this article.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezdakova, M.I., Matveeva, D.K., Buravkov, S.V. et al. The Role of Gap Junctions in Endothelial–Stromal Cell Interactions. Hum Physiol 47, 352–362 (2021). https://doi.org/10.1134/S036211972103004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211972103004X

Keywords:

Navigation