Skip to main content
Log in

Control the Functional State of the Brain Based on the Dynamics of Integral Parameters of Multichannel EEG in Human under Acute Hypoxia

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Development of methods for monitoring the functional state (FS) of people under extreme conditions is of great applied significance. The aim of this study was to investigate the dynamics of integral EEG parameters in individuals with different levels of hypoxia sensitivity and tolerance during their exposure to oxygen deficiency. Acute hypoxia was induced by a mixture of 8% oxygen in nitrogen for breathing. The study cohort was composed of 41 male participants aged from 19 to 45 years. We recorded a complex of physiological indices, as well as multichannel EEGs, based on which the structure function and the integral normalized parameters were calculated. These parameters were used as a measure of temporal (Pt) and spatial (Ps) connectivity between oscillations of brain potentials. The extreme values of parameters, 0 and 1, corresponded to the completely deterministic and “random” temporal and spatial organization of the EEG. A decrease in Pt, as hypoxia deepened, indicated a growth in the temporal connectivity and inertness in the EEG, which characterized a decrease in the physiological lability and the FS of the brain. Significant changes in Ps, which indicated an increase in the degree of EEG spatial connectivity, were recorded only in individuals with low hypoxia tolerance in a precollaptoid state. The use of the normalized Pt and Ps parameters allowed us to classify the subjects by the degree of their sensitivity to hypoxia and identify individuals with high sensitivity, under a relatively small fall in hemoglobin oxygen saturation (SaO2), and persons resistant to hypoxia even at low levels of SaO2, which is important for the selection of persons exposed to hypoxia by occupation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Malkin, V.B. and Gippenreiter, E.B., Acute and chronic hypoxia, in Problemy kosmicheskoi biologii (Problems of Space Biology), Moscow: Nauka, 1977, vol. 35.

  2. Novikov, V.S. and Soroko, S.I., Fiziologicheskie osnovy zhiznedeyatel’nosti cheloveka v ekstremal’nykh usloviyakh (Physiological Principles of Human Activities in Extreme Conditions), St. Petersburg: Politekhnika-Print, 2017.

  3. Zhao, J.-P., Zhang, R., Yu, Q., and Zhang, J.-X., Characteristics of EEG activity during high altitude hypoxia and lowland reoxygenation, Brain Res., 2016, vol. 1648, p. 243.

    Article  CAS  Google Scholar 

  4. Petrassi, F.A., Hodkinson, P.D., Walters, P.L., and Gaydos, S.L., Hypoxic hypoxia at moderate altitudes: review of the state of the science, Aviat. Space Environ. Med., 2012, vol. 83, no. 10, p. 975.

    Article  Google Scholar 

  5. Berger, M.M. and Grocott, M.P.W., Facing acute hypoxia: from the mountains to critical care medicine, Br. J. Anaesth., 2017, vol. 118, no. 3, p. 283.

    Article  CAS  Google Scholar 

  6. McMorris, T., Hale, B.J., Barwood, M., et al., Effect of acute hypoxia on cognition: a systematic review and meta-regression analysis, Neurosci. Biobehav. Rev., 2017, vol. 74, p. 225.

    Article  Google Scholar 

  7. Krivoshchekov, S.G., Balioz, N.V., Nekipelova, N.V., and Kapilevich, L.V., Age, gender, and individually-typological features of reaction to sharp hypoxic influence, Hum. Physiol., 2014, vol. 40, no. 6, p. 613.

    Article  CAS  Google Scholar 

  8. Vetosh, A.N. and Sharaev, A.P., Specific parametric description of the response of the human body to a stable hypoxic stimulus, Ul’yanovsk. Med.-Biol. Zh., 2016, no. 4, p. 86.

  9. Melnikov, V.N., Divert, V.E., Komlyagina, T.G., et al., Baseline values of cardiovascular and respiratory parameters predict response to acute hypoxia in young healthy men, Physiol. Res., 2017, vol. 66, no. 3, p. 467.

    Article  CAS  Google Scholar 

  10. Sharova, E.V., Ogurtsova, A.A., and Lapteva, K.N., EEG of neurosurgical patients in the early postoperative period, in Neirofiziologicheskie issledovnaiya v klinike (Neurophysiological Clinical Researches), Moscow: Nauchn. Med.-Issled. Tsentr Neirokhir. im. N.N. Burdenko, 2019, p. 150.

  11. Ozaki, H., Watanabe, S., and Suzuki, H., Topographic EEG changes due to hypobaric hypoxia at simulated high altitude, Electroencephalogr. Clin. Neurophysiol., 1995, vol. 94, no. 5, p. 349.

    Article  CAS  Google Scholar 

  12. Schellart, N.A. and Reits, D., Transient and maintained changes of the spontaneous occipital EEG during acute systemic hypoxia, Aviat. Space Environ. Med., 2001, vol. 72, no. 5, p. 462.

    CAS  PubMed  Google Scholar 

  13. Ginsburg, D.A., Pasternak, E.B., and Gurvitch, A.M., Correlation analysis of delta activity generated in cerebral hypoxia, Electroencephalogr. Clin. Neurophysiol., 1990, vol. 42, no. 4, p. 445.

    Article  Google Scholar 

  14. Soroko, S.I., Bekshaev, S.S., and Rozhkov, V.P., EEG markers of the disturbed systemic brain activity in hypoxia, Hum. Physiol., 2007, vol. 33, no. 5, p. 546.

    Article  Google Scholar 

  15. Rozhkov, V.P., Soroko, S.I., Trifonov, M.I., et al., Cortical-subcortical interactions and the brain functional state regulation under acute hypoxia in man, Ross. Fiziol. Zh. im. I.M. Sechenova, 2008, vol. 94, no. 5, p. 481.

    CAS  PubMed  Google Scholar 

  16. Li, G., Zhang, T., Chen, X., et al., Effect of intermittent hypoxic training on hypoxia tolerance based on brain functional connectivity, Physiol. Meas., 2016, vol. 37, no. 12, p. 2299.

    Article  CAS  Google Scholar 

  17. Papadelis, C., Kourtidou-Papadeli, C., Bamidis, P.D., et al., The effect of hypobaric hypoxia on multichannel EEG signal complexity, Clin. Neurophysiol., 2007, vol. 118, no. 1, p. 31.

    Article  Google Scholar 

  18. Schwender, D., Daunderer, M., Mulzer, S., et al., Spectral edge frequency of the electroencephalogram to monitor “depth” of anaesthesia with isoflurane or propofol, Br. J. Anaesth., 1996, vol. 77, no. 2, p. 179.

    Article  CAS  Google Scholar 

  19. Medical Advisory Secretariat, Bispectral index monitor: an evidence-based analysis, Ont. Health Technol. Assess. Ser., 2004, vol. 4, no. 9, p. 1.

    PubMed Central  Google Scholar 

  20. Diasamidze, K.E., Yusupov, Kh.E., and Rybka, M.M., Monitoring the volume of anesthesia in modern anesthesiology, Byull. Nauchn. Tsentra Serdechno-Susudistoi Khir. im. A.N. Bakuleva, Ross. Akad. Med. Nauk, 2017, vol. 18, no. 3, p. 256.

    Google Scholar 

  21. Davies, C., Katyayani, K., Kunst, G., et al., Comparing Bispectral Index and Narcotrend monitors in patients undergoing major hepatobiliary surgery: a case series, Clin. Audit., 2019, vol. 11, p. 17.

    Article  Google Scholar 

  22. Schneider, S. and Strüder, H.K., Monitoring effects of acute hypoxia on brain cortical activity by using electromagnetic tomography, Behav. Brain Res., 2009, vol. 197, no. 2, p. 476.

    Article  Google Scholar 

  23. Seghier, M.L. and Price, C.J., Interpreting and utilising intersubject variability in brain function, Trends Cognit. Sci., 2018, vol. 22, no. 6, p. 517.

    Article  Google Scholar 

  24. Wei, C.-S., Lin, Y.-P., Wang, Y.-T., et al., A subject-transfer framework for obviating inter- and intra-subject variability in EEG-based drowsiness detection, NeuroImage, 2018, vol. 174, p. 407.

    Article  Google Scholar 

  25. Trifonov, M.I. and Panasevich, E.A., Prediction of successful personal cognitive performance based on integrated characteristics of multichannel EEG, Hum. Physiol., 2018, vol. 44, no. 2, p. 208.

    Article  Google Scholar 

  26. Balioz, N.V. and Krivoshchekov, S.G., Individual typological features in the EEG of athletes after acute hypoxic treatment, Hum. Physiol., 2012, vol. 38, no. 5, p. 470.

    Article  Google Scholar 

  27. Rozhkov, V.P., Trifonov, M.I., Burykh, E.A., and Soroko, S.I., Assessment of individual human resistance to acute hypoxia based on integral characteristics of the structural function of multichannel EEG, Ross. Fiziol. Zh. im. I.M. Sechenova, 2019, vol. 105, no. 7, p. 832.

    Article  Google Scholar 

  28. Vadzinskii, R.N., Spravochnik po veroyatnostnym raspredelenyam (Handbook on Probabilistic Distributions), St. Petersburg: Nauka, 2001.

  29. Trifonov, M., The structure function as new integral measure of spatial and temporal properties of multi-channel EEG, Brain Inf., 2016, vol. 3, no. 4, p. 211.

    Article  Google Scholar 

  30. Prokhorov, S.A. and Grafkin, V.V., Strukturno-spektral’nyi analiz sluchainykh protsessov (Structural-Spectral Analysis of Random Processes), Samara: Samar. Nauch. Tsentr, Ross. Akad. Nauk, 2010.

  31. Livanov, M.N., Prostranstvennaya organizatsiya protsessov golovnogo mozga (Spatial Organization of Brain Processes), Moscow: Nauka, 1972.

  32. Babiloni, C., Barry, R.J., Başar, E., et al., International Federation of Clinical Neurophysiology (IFCN)–EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies, Clin. Neurophysiol., 2020, vol. 131, no. 1, p. 285.

    Article  Google Scholar 

  33. Ukhtomskii, A.A., Sobranie sochinenii. Tom 2. Parabioz, fiziologicheskaya labil’nost’, usvoenie ritma (Collection of Research Works, Vol. 2: Parabiosis, Physiological Lability, and Rhythm Assimilation), Leningrad: Leningr. Gos. Univ., 1951.

  34. Grindel’, O.M., Optimal level of EEG coherence and its role in evaluation of the state of human brain functions, Neurosci. Behav. Physiol., 1982, vol. 12, no. 3, p. 199.

    Article  Google Scholar 

  35. Tsitseroshin, M.N. and Shepoval’nikov, A.N., Stanovlenie integrativnoi funktsii mozga (Development of the Integrative Function of the Brain), St. Petersburg: Nauka, 2009.

  36. Shepovalnikov, A.N., Tsitseroshin, M.N., Rozhkov, V.P., et al., Interregional cortical interactions at different stages of natural sleep and the hypnotic state: EEG evidence, Hum. Physiol., 2005, vol. 31, no. 2, p. 150.

    Article  Google Scholar 

  37. Boldyreva, G.N., Elektricheskaya aktivnost’ mozga cheloveka pri porazheniyakh dientsefal’nykh i limbicheskikh struktur (Electrical Activity of the Human Brain with Lesions of the Diencephalic and Limbic Structures), Moscow: Nauka, 2000.

  38. Koenig, T., Studer, D., Hubl, D., et al., Brain connectivity at different time-scales measured with EEG, Philos. Trans. R. Soc. B, 2005, vol. 360, no. 1457, p. 1015.

    Article  CAS  Google Scholar 

  39. Lopes da Silva, F.H., Neural mechanisms underlying brain waves: from neural membranes to networks, Electroencephalogr. Clin. Neurophysiol., 1991, vol. 79, no. 2, p. 81.

    Article  CAS  Google Scholar 

  40. Buzsaki, G., Rhythms of the Brain, New York, NY: Oxford Univ. Press, 2006.

    Book  Google Scholar 

  41. Jiruška, P., Prokš, J., Drbal, O., et al., Comparison of different methods of time shift measurement in EEG, Physiol. Res., 2005, vol. 54, no. 4, p. 459.

    PubMed  Google Scholar 

  42. Seth, A.K., Barrett, A.B., and Barnett, L., Granger causality analysis in neuroscience and neuroimaging, J. Neurosci., 2015, vol. 35, no. 8, p. 3293.

    Article  CAS  Google Scholar 

  43. Byeon, J.G., Kaplan, A.Ya., Timashev, S.F., et al., Variability of the EEG autocorrelation structure in adolescents with schizophrenia spectrum disorders, Hum. Physiol., 2007, vol. 33, no. 1, p. 122.

    Article  Google Scholar 

  44. Abdurakhmanov, R.G. and Pinyaskina, E.V., Spectral analysis of electrocorticogram of rats with hypothermia, Mezhdunar. Zh. Prikl. Fundam. Issled., 2014, no. 8-3, p. 90.

  45. Lehmann, D., Ozaki, H., and Pal, I., EEG alpha map series: brain micro-states by space-oriented adaptive segmentation, Electroencephalogr. Clin. Neurophysiol., 1987, vol. 67, no. 3, p. 271.

    Article  CAS  Google Scholar 

  46. Khanna, A., Pascual-Leone, A., Michel, C.M., and Farzan, F., Microstates in resting-state EEG: current status and future directions, Neurosci. Biobehav. Rev., 2015, vol. 49, p. 105.

    Article  Google Scholar 

  47. Luk’yanova, L.D., Molecular mechanisms of tissue hypoxia and adaptation of the body, Fiziol. Zh., 2003, vol. 49, no. 3, p. 17.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank E.A. Burykh, MD, senior researcher of the Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, for his important contribution to the conduction of experimental investigations.

Funding

The study was supported by the Program of Research of the Presidium of the Russian Academy of Sciences no. 18 (АААА-А18-118013190226-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Rozhkov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All investigations were conducted in conformity with the principles of biomedical ethics stipulated under the 1964 Helsinki Declaration and its subsequent revisions and approved by the Commission on Ethics of the Academic Council, Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB), Russian Academy of Sciences (RAS) (St. Petersburg).

INFORMED CONSENT

Each participant in the study gave his informed voluntary written consent signed by him after informing him about potential risks, as well as about the nature of the forthcoming study.

CONFLICTS OF INTERESTS

The authors declare the absence of apparent and potential conflicts of interests related to the publication of this study.

Additional information

Translated by N. Tarasyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhkov, V.P., Trifonov, M.I. & Soroko, S.I. Control the Functional State of the Brain Based on the Dynamics of Integral Parameters of Multichannel EEG in Human under Acute Hypoxia. Hum Physiol 47, 1–13 (2021). https://doi.org/10.1134/S0362119721010114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119721010114

Keywords:

Navigation