Skip to main content
Log in

Use of the Amplitude–Temporal Parameters Related to the Events of the Brain Potentials as Indicators of Specific Processes of Name (Nomination) and Recognition of the Subject by Name (Denotation)

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The article presents an experimental study of the specific mechanisms of the nominative and denotative functions of speech, carried out by the methods of neurophysiology, psychophysiology and neuropsychology. Object-naming deficit (nomination), combined with the intact object recognition by its name (denotation) was the starting point for the study. The idea of the similarity of the main components that ensure nomination and denotation is refuted by this fact and demonstrates the differences in the brain organization of these processes, which is manifested in the specificity of their disorders in local brain lesions. In 20 subjects (10 men and 10 women aged 18–23 years), upon presentation of objects’ images or names, the following parameters were recorded: the simple sensorimotor reaction, the electroencephalogram, event-related potentials (ERPs), and the conditionally negative wave (contingent negative variation, CNV). Statistical analysis of the amplitude–time parameters of the main components of ERPs and CNV showed significant differences in their configuration and topography. These differences may reflect sequential activity of various brain structures at different time stages in the implementation of the studied speech functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Indefrey, P., The spatial and temporal signatures of word production components: a critical update, Front. Psychol., 2011, vol. 2, p. 255.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vasil’eva, M., Mental vocabulary: where is the place of morphology? Ross. Zh. Kognit. Nauki, 2014, vol. 1, no. 4, p. 31.

    Google Scholar 

  3. Luriya, A.R., Osnovnye problemy neirolingvistiki (General Problems in Neurolinguistics), Moscow: LKI, 2007, 2nd ed.

  4. DeLeon, I.G., Frank-Crawford, M.A., Gregory, M., et al., On the correspondence between preference assessment outcomes and progressive-ratio schedule assessments of stimulus value, J. Appl. Behav. Anal., 2009, vol. 42, no. 3, p. 729.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Вreus, E.V., Teoriya i praktika perevoda s angliskogo na russkii: uchebnoe posobie (Theory and Practice of Translation from English to Russian Language: Manual), Moscow: Univ. Ross. Akad. Obraz., 2001, part 1

  6. Valente, A., Pinet, S., Alario, F-X., et al., “When” does picture naming take longer than word reading?‏ Front. Psychol., 2016, vol. 7, p. 31.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rommers, J. and Federmeier, K., Electrophysiological methods, in Research Methods in Psycholinguistics and the Neurobiology of Language: A Practical Guide, De Groot, A.M.B. and Hagoort, P., Eds., Hoboken, NJ: Wiley, 2017.

    Google Scholar 

  8. Mikadze, Yu.V., Chernorizov, A.M., Skvortsov, A.A., et al., Models and methods for the study of information processing in the processes of naming the subject, Eksp. Psikhol., 2019, vol. 12, no. 1, p. 153.

    Google Scholar 

  9. Kutas, M. and Hillyard, S.A., Reading senseless sentences: Brain potentials reflect semantic incongruity, Science, 1980, vol. 207, no. 4427, p. 203.

    Article  CAS  PubMed  Google Scholar 

  10. Osterhout, L. and Holcomb, P.J., Event-related brain potentials elicited by syntactic anomaly, J. Mem. Lang., 1992, vol. 31, p. 785.

    Article  Google Scholar 

  11. Delogu, F., Brouwer, H., and Crocker, M.W., Event-related potentials index lexical retrieval (N400) and integration (P600) during language comprehension, Brain Cognit., 2019, vol. 135, p. 103569.

    Article  Google Scholar 

  12. Holcomb, P., Grainger, J., and O’Rourke, T., An electrophysiological study of the effects of orthographic neighborhood size on printed word perception, J. Cognit. Neurosci., 2002, vol. 14, no. 6, p. 938.

    Article  Google Scholar 

  13. Hahne, A. and Friederici, A.D., Electrophysiological evidence for two steps in syntactic analysis: Early automatic and late controlled processes, J. Cognit. Neurosci., 1999, vol. 11, no. 2, p. 194.

    Article  CAS  Google Scholar 

  14. Friederici, A.D., Neurophysiological markers of early language acquisition: From syllables to sentences, Trends Cognit. Sci., 2006, vol. 9, no. 10, p. 481.

    Article  Google Scholar 

  15. Mills, D.L., Coffey-Corina, S., and Neville, H.J., Language comprehension and cerebral specialization from 13 to 20 months, Dev. Neuropsychol., 1997, vol. 13, no. 3, p. 397.

    Article  Google Scholar 

  16. Steinhauer, K. and Connolly, J.F., Event-related potentials in the study of language, in Handbook of the Neuroscience of Language, Stemmer, B. and Whitaker, H.A., Eds., London: Academic, 2008, p. 191.

    Google Scholar 

  17. Aleksandrov, I.O. and Maksimova, N.E., Event-related brain potentials (ERPs) in psychophysiological studies, in Osnovy psikhofiziologii (Fundamentals of Psychophysiology), St. Petersburg: Piter, 2001, chap. 16, 2nd ed.

  18. Walter, W.G., Cooper, R., Aldridge, V.J., et al., Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain, Nature, 1964, vol. 203, p. 380.

    Article  CAS  PubMed  Google Scholar 

  19. Tecce, J.J., Contingent negative variation (CNV) and psychological processes in man, Psychol. Bull., 1972, vol. 77, no. 2, p. 73.

    Article  CAS  PubMed  Google Scholar 

  20. Macar, F., Vidal, F., and Casini, L., The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes, Exp. Brain Res., 1999, vol. 125, p. 271.

    Article  CAS  PubMed  Google Scholar 

  21. Kononowicz, T.W. and van Rijn, H., Slow potentials in time estimation: the role of temporal accumulation and habituation, Front. Integr. Neurosci., 2011, vol. 5, p. 48.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kononowicz, T.W., Sander, T., and van Rijn, H., Neuroelectromagnetic signatures of the reproduction of supra-second durations, Neuropsychologia, 2015, vol. 75, p. 201.

    Article  PubMed  Google Scholar 

  23. Herbst, S.K., Chaumon, M., Penney, T.B., and Busch, N.A., Flicker-induced time dilation does not modulate EEG correlates of temporal encoding, Brain Topogr., 2014, vol. 28, no. 4, p. 559.

    Article  PubMed  Google Scholar 

  24. Wiener, M., Kliot, D., Turkeltaub, P.E., et al., Parietal influence on temporal encoding indexed by simultaneous transcranial magnetic stimulation and electroencephalography, J. Neurosci., 2012, vol. 32, p. 12258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kononowicz, T.W. and van Rijn, H., Decoupling interval timing and climbing neural activity: a dissociation between CNV and N1P2 amplitudes, J. Neurosci., 2014, vol. 34, p. 2931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Plichta, M.M., Wolf, I., Hohmann, S., et al., Simultaneous EEG and fMRI reveals a causally connected subcortical–cortical network during reward anticipation, J. Neurosci., 2013, vol. 33, p. 14526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mallet, N., Pogosyan, A., Sharott, A., et al., Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex, J. Neurosci., 2008, vol. 28, p. 4795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kononowicz, T.W. and Penney, T.B., The contingent negative variation (CNV): timing isn’t everything, Curr. Opin. Behav. Sci., 2016, vol. 8, p. 231.

    Article  Google Scholar 

  29. Snodgrass, J.G. and Vanderwart, M., A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity, J. Exp. Psychol.: Hum. Learn. Mem., 1980, vol. 6, no. 2, p. 174.

    CAS  Google Scholar 

  30. Grigor’ev, A.A., Oshchepkov, I.V., Balyasnikova, O.V., et al., Normative data on imagery, naming consistency, familiarity and naming image correspondence for a set of 286 stimuli, Vopr. Psikholingvistiki, 2009, no. 10, p. 128.

  31. Gramfort, A., Luessi, M., Larson, E., et al., MNE software for processing MEG and EEG data, NeuroImage, 2014, vol. 1, no. 86, p. 446.

    Article  Google Scholar 

  32. Gramfort, A., Luessi, M., Larson, E., et al., MEG and EEG data analysis with MNE-Python, Front. Neurosci., 2013, vol. 7, no. 267, p. 267.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maris, E. and Oostenveld, R., Nonparametric statistical testing of EEG- and MEG-data, J. Neurosci. Methods, 2007, vol. 164, no. 1, p. 177.

    Article  PubMed  Google Scholar 

  34. Anderson, M., Nettelbeck, T., and Barlow, J., Reaction time measures of speed processing: Speed of response selection increases with age but speed of stimulus categorization does not, Br. J. Dev. Psychol., 1997, vol. 15, no. 2, p. 145.

    Article  Google Scholar 

  35. Riès, S., Legou, T., Burle, B., et al., Why does picture naming take longer than word reading? The contribution of articulatory processes, Psychon. Bull. Rev., 2012, vol. 19, p. 955.

    Article  PubMed  Google Scholar 

  36. Valente, A., Pinet, S., Alario, F.-X., and Laganaro, M., “When” does picture naming take longer than word reading? Front. Psychol., 2016, vol. 7, no. 31, p. 31.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schwarzlose, R.F., Swisher, J.D., Dang, S., and Kanwisher, N., The distribution of category and location information across object-selective regions in human visual cortex, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 11, p. 4447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weiner, K.S. and Grill-Spector, K., Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle, Psychol. Res., 2013, vol. 77, no. 1, p. 74.

    Article  PubMed  Google Scholar 

  39. Peelen, M.V. and Downing, P.E., Selectivity for the human body in the fusiform gyrus, J. Neurophysiol., 2005, vol. 93, no. 1, p. 603.

    Article  PubMed  Google Scholar 

  40. Kadipasaoglu, C.M., Conner, C.R., Whaley, M.L., et al., Category-selectivity in human visual cortex follows cortical topology: a grouped icEEG study, PLoS One, 2016, vol. 11, no. 6, p. e0157109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bracci, S., Caramazza, A., and Peelen, M.V., Representational similarity of body parts in human occipitotemporal cortex, J. Neurosci., 2015, vol. 35, no. 38, p. 12977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nobre, A.C., Allison, T., and McCarthy, G., Word recognition in the human inferior temporal lobe, Nature, 1994, vol. 372, no. 6503, p. 260.

    Article  CAS  PubMed  Google Scholar 

  43. Konkle, T. and Oliva, A., A real-world size organization of object responses in occipitotemporal cortex, Neuron., 2012, vol. 74, no. 6, p. 1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mollo, G., Pulvermüller, F., and Hauk, O., Movement priming of EEG/MEG brain responses for action-words characterizes the link between language and action, Cortex, 2016, vol. 74, p. 262.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maris, E., Statistical testing in electrophysiological studies, Psychophysiology, 2012, vol. 49, no. 4, p. 549.

    Article  PubMed  Google Scholar 

  46. Walter, W.G., Cooper, R., Aldridge, V.J., et al., Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain, Nature, 1964, vol. 203, no. 4943, p. 380.

    Article  CAS  PubMed  Google Scholar 

  47. Rijn, H., Kononowicz, T.W., Meck, W.H., et al., Contingent negative variation and its relation to time estimation: a theoretical evaluation, Front. Integr. Neurosci., 2011, vol. 5, p. 91.

    PubMed  PubMed Central  Google Scholar 

  48. Kiroi, V.N., Bakhtin, O.M., Minyaeva, N.R., et al., Electrographic correlates of predictions of the time course of events, Neurosci. Behav. Physiol., 2018, vol. 48, no. 8, p. 990.

    Article  Google Scholar 

  49. Uysal, U., Idiman, F., Idiman, E., et al., Contingent negative variation is associated with cognitive dysfunction and secondary progressive disease course in multiple sclerosis, J. Clin. Neurol., 2014, vol. 10, no. 4, p. 296.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Oishi, M., Mochizuki, Y., Du, C., et al., Contingent negative variation and movement-related cortical potentials in Parkinsonism, Electroencephalogr. Clin. Neurophysiol., 1995, vol. 95, p. 346.

    Article  CAS  PubMed  Google Scholar 

  51. Drake, M.E., Jr., Weate, S.J., and Newell, S.A., Contingent negative variation in epilepsy, Seizure, 1997, vol. 6, p. 297.

    Article  PubMed  Google Scholar 

  52. Kamijo, K., Pontifex, M.B., O’Leary, K.C., et al., The effects of an after school physical activity program on working memory in preadolescent children, Dev. Sci., 2011, vol. 14, no. 5, p. 1046.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ludyga, S., Gerber, M., Kamijo, K., et al., The effects of a school-based exercise program on neurophysiological indices of working memory operations in adolescents, J. Sci. Med. Sport., 2018, vol. 21, no. 8, p. 833.

    Article  PubMed  Google Scholar 

  54. Segalowitz, S.J., Santesso, D.L., and Jetha, M.K., Electrophysiological changes during adolescence: a review, Brain Cognit., 2010, vol. 72, no. 1, p. 86.

    Article  Google Scholar 

  55. Flores, A.B., Digiacomo, M.R., Meneres, S., et al., Development of preparatory activity indexed by the contingent negative variation in children, Brain Cognit., 2009, vol. 71, no. 2, p. 129.

    Article  Google Scholar 

  56. Gomez, C.M., Flores, A., and Ledesma, A., Fronto-parietal networks activation during the contingent negative variation period, Brain Res. Bull., 2007, vol. 73, nos. 1–3, p. 40.

    Article  PubMed  Google Scholar 

  57. Arjona, A. and Gómez, C.M., Sequential effects in the central cue Posner paradigm: on-line Bayesian learning, in Cognitive Electrophysiology of Attention: Signals of the Mind, Mangun, G.R., Ed., Amsterdam: Elsevier, 2014, p. 45.

    Google Scholar 

  58. Loveless, N.E. and Sanford, A.J., Slow potential correlates of preparatory set, Biol. Psychol., 1974, vol. 1, no. 4, p. 303.

    Article  CAS  PubMed  Google Scholar 

  59. Anokhin, P.K., Sistemnye mekhanizmy vysshei nervnoi deyatel’nosti: izbrannye trudy (System Mechanisms of Higher Nervous Activity: Selected Research Works), Moscow: Nauka, 1979.

  60. Price, C. J., McCrory, E., Noppeney, U., et al., How reading differs from object naming at the neuronal level, NeuroImage, 2006, vol. 29, p. 643.

    Article  CAS  PubMed  Google Scholar 

  61. Kutas, M., DeLong, K.A., and Smith, N.J., A look around at what lies ahead: prediction and predictability in language processing, in Predictions in the Brain: Using our Past to Generate a Future, Bar, M., Ed., Oxford: Oxford Univ. Press, 2011, p. 400.

    Google Scholar 

  62. Magyari, L., Bastiaansen, M., De Ruiter, J.P., and Levinson, S.C., Early anticipation lies behind the speed of response in conversation, J. Cognit. Neurosci., 2014, vol. 26, no. 11, p. 2530.

    Article  Google Scholar 

  63. Gisladottir, R.S., Chwilla, D.J., and Levinson, S.C., Conversation electrified: ERP correlates of speech act recognition in underspecified utterances, PLoS One, 2015, vol. 10, no. 3, p. e0120068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Levinson, S.C., Action formation and ascription, in The Handbook of Conversation Analysis, Stivers, T. and Sidnell, J., Eds., Chichester: Wiley, 2013.

    Google Scholar 

  65. Babiloni, C., Brancucci, A., Vecchio, F., et al., Anticipation of somatosensory and motor events increases centro-parietal functional coupling: an EEG coherence study, Clin. Neurophysiol., 2006, vol. 117, no. 5, p. 1000.

    Article  PubMed  Google Scholar 

  66. Bender, S., Resch, F., Weisbrod, M., et al., Specific task anticipation versus unspecific orienting reaction during early contingent negative variation, Clin. Neurophysiol., 2004, vol. 115, no. 8, p. 1836.

    Article  PubMed  Google Scholar 

  67. Hamame, C.M., Vidal, J.R., Perrone-Bertolotti, M., et al., Functional selectivity in the human occipitotemporal cortex during natural vision: evidence from combined intracranial EEG and eye-tracking, NeuroImage, 2014, vol. 95, p. 276.

    Article  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 18-013-00655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pilecheva.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All studies were conducted in accordance with the principles of biomedical ethics formulated in the Declaration of Helsinki, 1964, and its subsequent updates; they were also approved by the local bioethics committee of the Ethics Committee of the Faculty of Psychology of the Moscow State University.

CONFLICT OF INTEREST

The authors declare no apparent or potential conflict of interest connecting with publishing this article.

INFORMED CONSENT

Each subject received detailed information on potential risks, advantages, and the nature of the forthcoming study and gave an informed consent.

Additional information

Translated by A. Deryabina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaichev, S.A., Chernorizov, A.M., Adamovich, T.V. et al. Use of the Amplitude–Temporal Parameters Related to the Events of the Brain Potentials as Indicators of Specific Processes of Name (Nomination) and Recognition of the Subject by Name (Denotation). Hum Physiol 46, 651–662 (2020). https://doi.org/10.1134/S0362119720060031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720060031

Keywords:

Navigation