Skip to main content
Log in

The Biochemical Linkage between Gut Microbiota and Obesity: a Mini Review

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript
  • 3 Altmetric

Abstract

The gastrointestinal tract is colonized with trillions of bacteria that are specialized of numerous physiological and immunological functions. The gut microbiata have been shown to impact nutrients processing and energy extraction. Accordingly, a link between obesity and the diversity and size of gut microbiata has been established. This review discussed the possible biochemical mechanisms through which gut micobiota might impact obesity and fat storage regulations and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Schaedler, R.W., Dubos, R., and Costello, R., The development of the bacterial flora in the gastrointestinal tract of mice, J. Exp. Med., 1965, vol. 122, no. 1, p. 59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stewart, C.J., Ajami, N.J., O’Brien, J.L., et al., Temporal development of the gut microbiome in early childhood from the TEDDY study, Nature, 2018, vol. 562, no. 7728, p. 583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andoh, A., Physiological role of gut microbiota for maintaining human health, Digestion, 2016, vol. 93, no. 3, p. 176.

    Article  CAS  PubMed  Google Scholar 

  4. Sekirov, I., Russell, S.L., Caetano, L., et al., Gut microbiota in health and disease, Physiol. Rev., 2010, vol. 90, no. 3, p. 859.

    Article  CAS  PubMed  Google Scholar 

  5. Donaldson, G.P., Lee, S.M., and Mazmanian, S.K., Gut biogeography of the bacterial microbiota, Nat. Rev. Microbiol., 2015, vol.14, no. 1, p. 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. O’Hara, A.M. and Shanahan, F., The gut flora as a forgotten organ, EMBO Rep., 2006, vol. 7, no. 7, p. 688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Eckburg, P.B., Bik, E.M., Bernstein, C.N., et al., Microbiology: Diversity of the human intestinal microbial flora, Science, 2005, vol. 308, no. 5728, p. 1635.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hillman, E.T., Lu, H., Yao, T., and Nakatsu, C.H., Microbial ecology along the gastrointestinal tract, Microbes Environ., 2017, vol. 32, no. 4, p. 300.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Savage, D.C., Microbial ecology of the gastrointestinal tract, Annu. Rev. Microbiol., 1977, vol. 31, p. 107.

    Article  CAS  PubMed  Google Scholar 

  10. Morowitz, M.J., Carlisle, E.M., and Alverdy, J.C., Contributions of intestinal bacteria to nutrition and metabolism in the critically ill, Surg. Clin. N. Am., 2011, vol. 91, no. 4, p. 771.

    Article  PubMed  Google Scholar 

  11. Thursby, E. and Juge, N., Introduction to the human gut microbiota, Biochem. J., 2017, vol. 474, no. 11, p. 1823.

    Article  CAS  PubMed  Google Scholar 

  12. John G.K. and Mullin, G.E., The gut microbiome and obesity, Curr. Oncol. Rep., 2016, vol. 18, no. p. 2.

  13. Vandeputte, D., Falony, G., Vieira-Silva, S., et al., Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates, Gut, 2016, vol. 65, p. 57.

    Article  CAS  PubMed  Google Scholar 

  14. Pescatello L.S., Arena, R., Riebe, D., and Thompson, P.D., ACSM’s guidelines for exercise testing and prescription 9th ed, J. Can. Chiropract. Assoc., 2014, vol. 58, no. 3, p. 328.

  15. Bäckhed, F., Ding, H., Wang, T., et al., The gut microbiota as an environmental factor that regulates fat storage, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 44, p. 15718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, 2006, vol. 444, no. 7122, p. 1027.

    Article  PubMed  Google Scholar 

  17. Chatelier, E., Le, T., Nielsen, J., et al., Richness of human gut microbiome correlates with metabolic markers, Nature, 2013, vol. 500, no. 7464, p. 541.

    Article  PubMed  CAS  Google Scholar 

  18. Murugesan, S., Ulloa-Martínez, M., Martínez-Rojano, H., et al., Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children, Eur. J. Clin. Microbiol. Infect. Dis., 2015, vol. 34, no. 7, p. 1337.

    Article  CAS  PubMed  Google Scholar 

  19. Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, 2006, vol. 444, no. 7122, p. 1027.

    Article  PubMed  Google Scholar 

  20. Kasai, C., Sugimoto, K., Moritani, I., et al., Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing, BMC Gastroenterol., 2015, vol. 15, p. 100.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ley, R.E., Bäckhed, F., Turnbaugh, P., et al., Obesity alters gut microbial ecology, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 31, p. 11070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I., Microbial ecology: Human gut microbes associated with obesity, Nature, 2006, vol. 444, no. 7122, p. 1022.

    Article  CAS  PubMed  Google Scholar 

  23. Lin, S.-W., Freedman, N.D., Shi, J., et al., Beta-diversity metrics of the upper digestive tract microbiome are associated with body mass index, Obesity, 2015, vol. 23, no. 4, p. 862.

    Article  CAS  PubMed  Google Scholar 

  24. Haro, C., Rangel-Zúñiga, O.A., Alcalá-Díaz, J. F., et al., Intestinal microbiota is influenced by gender and body mass index, PLoS One, 2016, vol. 11, p. e0154090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Walters, W.A., Xu, Z., and Knight, R., Meta-analyses of human gut microbes associated with obesity and IBD, FEBS Lett., 2014, vol. 588, p. 4223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Genotyping and Quality Control of UK Biobank, a Large-Scale, Extensively Phenotyped Prospective Resource, Stockport: UK Biobank, 2015.

  27. Castaner, O., Goday, A., Park, Y.M., et al., The gut microbiome profile in obesity: a systematic review, Int. J. Endocrinol., 2018, vol. 2018, art. ID 4095789.

    PubMed  PubMed Central  Google Scholar 

  28. Tseng, C.H. and Wu, C.Y., The gut microbiome in obesity, J. Formosan Med. Assoc., 2019, suppl. 118, p. S3.

  29. Bäckhed, F., Manchester, J.K., Semenkovich, C.F., and Gordon, J.I., Mechanisms underlying the resistance to diet-induced obesity in germ-free mice, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 3, p. 979. https://doi.org/10.1073/pnas.0605374104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blaut, M., Gut microbiota and energy balance: role in obesity, Proc. Nutr. Soc., 2015, vol. 74, no. 3, p. 227.

    Article  CAS  PubMed  Google Scholar 

  31. Samuel, B.S., Shaito, A., Motoike, T., et al., Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 43, p. 16767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. den Besten, G., van Eunen, K., Groen, A.K., et al., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, J. Lipid Res., 2013, vol. 54, no. 9, p. 2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Topping, D.L. and Clifton, P.M., Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides, Physiol. Rev., 2001, vol. 81, no. 3, p. 1031.

    Article  CAS  PubMed  Google Scholar 

  34. Stevens, C.E. and Hume, I.D., Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients, Physiol. Rev., 1998, vol. 78, no. 2, p. 393.

    Article  CAS  PubMed  Google Scholar 

  35. Koh, A., De Vadder, F., Kovatcheva-Datchary, P., and Bäckhed, F., From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites, Cell, 2016, vol. 165, no. 6, p. 1332.

    Article  CAS  PubMed  Google Scholar 

  36. Samuel, B.S. and Gordon, J.I., A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 26, p. 10011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schwiertz, A., Taras, D. Schäfer, K., et al., Microbiota and SCFA in lean and overweight healthy subjects, Obesity, 2010, vol. 18, no. 1, p. 190.

    Article  PubMed  Google Scholar 

  38. Poul, E.L., Loison, C., Struyf, S., et al., Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation, J. Biol. Chem., 2003, vol. 278, no. 28, p. 25481.

    Article  PubMed  CAS  Google Scholar 

  39. Xiong, Y., Miyamoto, N., Shibata, K., et al., Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 4, p. 1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cani, P.D., Dewever, C., and Delzenne, N.M., Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats, Br. J. Nutr., 2004, vol. 92, no. 3, p. 521.

    Article  CAS  PubMed  Google Scholar 

  41. Cani, P.D., Neyrinck, A.M., Maton, N., and Delzenne, N.M., Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide-1, Obes. Res., 2005, vol. 13, no. 6, p. 1000.

    Article  CAS  PubMed  Google Scholar 

  42. Lin, H.V., Frassetto, A., Kowalik, E.J.J., et al., Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms, PLoS One, 2012, vol. 7, no. 4, p. e35240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morrison, D.J. and Preston, T., Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism, Gut Microbes, 2016, vol. 7, no. 3, p. 189.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dalile, B., van Oudenhove, L., Vervliet, B., and Ver-beke, K., The role of short-chain fatty acids in microbiota–gut–brain communication, Nat. Rev. Gastroenterol. Hepatol., 2019, vol. 16, no. 8, p. 461.

    Article  PubMed  Google Scholar 

  45. Frampton, J., Murphy, K.G., Frost, G., and Chambers, E.S., Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function, Nat. Metab., 2020. https://doi.org/10.1038/s42255-020-0188-7

  46. Cani, P.D., Amar, J., Iglesias, M.A., et al., Metabolic endotoxemia initiates obesity and insulin resistance, Diabetes, 2007, vol. 56, no. 7, p. 1761.

    Article  CAS  PubMed  Google Scholar 

  47. Hersoug, L.-G., Møller, P. and Loft, S., Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity, Obes. Rev., 2016, vol. 17, no. 4, p. 297.

    Article  CAS  PubMed  Google Scholar 

  48. Griffiths, E.A., Duffy, L.C., Schanbacher, F.L., et al., In vivo effects of bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in Balb/c mice, Dig. Dis. Sci., 2004, vol. 49, no. 4, p. 579.

    Article  CAS  PubMed  Google Scholar 

  49. Cani, P.D., Neyrinck, A.M., Fava, F., et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia, Diabetologia, 2007, vol. 50, no. 11, p. 2374.

    Article  CAS  PubMed  Google Scholar 

  50. Yoon, J.C., Chickering, T.W., Rosen, E.D., et al., Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation, Mol. Cell. Biol., 2000, vol. 20, no. 14, p. 5343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu, A., Lam, M.C., Chan, K.W., et al., Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 17, p. 6086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mandard, S., Zandbergen, F., van Straten, E., et al., The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity, J. Biol. Chem., 2006, vol. 281, no. 2, p. 934.

    Article  CAS  PubMed  Google Scholar 

  53. Wolf, G., Gut microbiota: a factor in energy regulation, Nutr. Rev., 2006, vol. 64, no. 1, p. 47.

    Article  PubMed  Google Scholar 

  54. Aronsson, L., Huang, Y., Parini, P., et al., Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4), PLoS One, 2010, vol. 5, no. 9, e13087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Winder, W.W. and William, W., Roles of adenosine monophosphate-activated protein kinase in skeletal muscle: Fatty acid oxidation, glucose transport, and gene regulation, Curr. Opin. Endocrinol. Diabetes, 2001, vol. 8, no. 4, p. 180.

    Article  CAS  Google Scholar 

  56. Stein, S.C., Woods, A., Jones, N.A., et al., The regulation of AMP-activated protein kinase by phosphorylation, Biochem. J., 2000, vol. 345, no. 3, p. 437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Al-horani.

Ethics declarations

The authors declare no any conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-horani, R., AbuMoh’d, M.F. The Biochemical Linkage between Gut Microbiota and Obesity: a Mini Review. Hum Physiol 46, 703–708 (2020). https://doi.org/10.1134/S036211972006002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211972006002X

Keywords:

Navigation