Skip to main content

Physiological Reactions of Patients with Parkinsonism to Simulated Microgravity Using “Dry” Immersion: A Pilot Study

Abstract

A research experiment on the use of the ground-based microgravity model using “dry” immersion (DI) procedures as a rehabilitation measure for reducing the symptoms of Parkinson’s disease (PD) is presented in this review. It has been established that a single short-term DI procedure has a strong effect on the hemodynamics of a patient with PD, decreasing the diastolic blood pressure, improving the structure of the cardiac rhythm, and reducing the amplitude and recurrence of the summary electromyogram, as well as the degree of muscle rigidity. A treatment course consisting of seven separate DI procedures reduces muscle rigidity and the severity of motor symptoms diagnosed by the Unified Parkinson’s Disease Rating Scale pt. III (UPDRS-III), the degree of depression determined by Hamilton’s Depression Rating Scale (HDRS), and the severity of autonomic symptoms estimated by Vein’s scale. As the reaction time tests have shown, the DI course has a higher positive effect on tests with a high cognitive load than on ordinary motor tests. The obtained clinical and instrumental physiological data confirm that DI favorably affects many autonomic, affective, and cognitive parameters, as well as muscle rigidity.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Wirdefeldt, K., Adami, H.O., Cole, P., et al., Epidemiology and etiology of Parkinson’s disease: a review of the evidence, Eur. J. Epidemiol., 2011, vol. 26, suppl. 1, p. S1.

    Article  PubMed  Google Scholar 

  2. Tysnes, O.B. and Storstein, A., Epidemiology of Parkinson’s disease, J. Neural Transm., 2017, vol. 124, no. 8, p. 901.

    Article  PubMed  Google Scholar 

  3. Berendse, H.W. and Ponsen, M.M., Detection of preclinical Parkinson’s disease along the olfactory tract, J. Neural Transm., Suppl., 2006, vol. 70, p. 321.

    CAS  Google Scholar 

  4. Noyes, K., Liu, H., Li, Y., et al., Economic burden associated with Parkinson’s disease on elderly Medicare beneficiaries, Mov. Disord., 2006, vol. 21, no. 3, p. 362.

    Article  PubMed  Google Scholar 

  5. Pasluosta, C.F., Gassner, H., Winkler, J., et al., Parkinson’s disease as a working model for global healthcare restructuration: the internet of things and wearables technologies, Proc. 5th EAI Int. Conf. on Wireless Mobile Communication and Healthcare “Transforming Healthcare through Innovations in Mobile and Wireless Technologies,” (MOBIHEALTH'15), Brussels, 2015. https://doi.org/10.4108/eai.14-10-2015.2261705

  6. Lebouvier, T., Tasselli, M., Paillusson, S., et al., Biopsable neural tissues: toward new biomarkers for Parkinson’s disease? Front. Psychiatry, 2010, vol. 1, p. 128.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rodriguez-Oroz, M.C., Jahanshahi, M., Krack, P., et al., Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms, Lancet Neurol., 2009, vol. 8, no. 12, p. 1128.

    Article  CAS  PubMed  Google Scholar 

  8. Latash, M.L., Neurophysiological Basis of Movement, Champaign, IL: Human Kinetics, 1998.

    Google Scholar 

  9. Meigal, A., Korzun, D., Gerasimova-Meigal, L., et al., Ambient intelligence At-Home Laboratory for human everyday life, Int. J. Embedded Real-Time Commun. Syst., 2019, vol. 10, no. 2, p. 117.

    Article  Google Scholar 

  10. Siderowf, A. and Stern, M.B., Preclinical diagnosis of Parkinson’s disease: are we there yet? Curr. Neurol. Neurosci. Rep., 2006, vol. 6, no. 4, p. 295.

    Article  PubMed  Google Scholar 

  11. Tomlinson, C.L., Herd, C.P., Clarke, C.E., et al., Physiotherapy for Parkinson’s disease: a comparison of techniques, Cochrane Database Syst. Rev., 2014, vol. 6. https://doi.org/10.1002/14651858.CD002815.pub2

  12. Bukowska, A.A., Krężałek, P., Mirek, E., et al., Neurologic music therapy training for mobility and stability rehabilitation with Parkinson’s disease—a pilot study, Front. Hum. Neurosci., 2016, vol. 9, p. 710. https://doi.org/10.3389/fnhum.2015.00710

    Article  PubMed Central  PubMed  Google Scholar 

  13. Goodwin, V.A., Richards, S.H., Taylor, R.S., et al., The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis, Mov. Disord., 2008, vol. 23, no. 5, p. 631.

    Article  PubMed  Google Scholar 

  14. Flach, A., Jaegers, L., Krieger, M., et al., Endurance exercise improves function in individuals with Parkinson’s disease: a meta-analysis, Neurosci Lett., 2017, vol. 659, p. 115.

    Article  CAS  PubMed  Google Scholar 

  15. Shanahan, J., Morris, M.E., Bhriain, O.N., et al., Dancing for Parkinson disease: a randomized trial of Irish set dancing compared with usual care, Arch. Phys. Med. Rehabil., 2017, vol. 98, no. 9, p. 1744.

    Article  PubMed  Google Scholar 

  16. Dos Santos Delabary, M., Komeroski, I.G., Monteiro, E.P., et al., Effects of dance practice on functional mobility, motor symptoms and quality of life in people with Parkinson’s disease: a systematic review with meta-analysis, Aging Clin. Exp. Res., 2018, vol. 30, no. 7, p. 727.

    Article  PubMed  Google Scholar 

  17. Liu, H.H., Yeh, N.C., Wu, Y.F., et al., Effects of Tai Chi exercise on reducing falls and improving balance performance in Parkinson’s disease: a meta-analysis, Parkinson’s Dis., 2019, vol. 2019, art. ID 9626934. https://doi.org/10.1155/2019/9626934

    Article  Google Scholar 

  18. Green, E., Huynh, A., Broussard, L., et al., Systematic review of yoga and balance: effect on adults with neuromuscular impairment, Am. J. Occup. Ther., 2019, vol. 73, no. 1, p. 7301205150p1.

  19. Asakawa, T., Sugiyama, K., Nozaki, T., et al., Can the latest computerized technologies revolutionize conventional assessment tools and therapies for a neurological disease? The example of Parkinson’s disease, Neurol. Med.-Chir. (Tokyo), 2019, vol. 59, no. 3, p. 69.

    Article  Google Scholar 

  20. Klamroth, S., Steib, S., Devan, S., and Pfeifer, K., Effects of exercise therapy on postural instability in Parkinson disease: a meta-analysis, J. Neurol. Phys. Ther., 2016, vol. 40, no. 1, p. 3.

    Article  PubMed  Google Scholar 

  21. Combs-Miller, S.A. and Moore, E.S., Predictors of outcomes in exercisers with Parkinson disease: a two-year longitudinal cohort study, NeuroRehabilitation, 2019, vol. 44, no. 3, p. 425.

    Article  PubMed  Google Scholar 

  22. Vivas, J., Arias, P., and Cudeiro, J., Aquatic therapy versus conventional land-based therapy for Parkinson’s disease: an open-label pilot study, Arch. Phys. Med. Rehabil., 2011, vol. 92, no. 8, p. 1202.

    Article  PubMed  Google Scholar 

  23. Ayán, C. and Cancela, J., Feasibility of 2 different water-based exercise training programs in patients with Parkinson’s disease: a pilot study, Arch. Phys. Med. Rehabil., 2012, vol. 93, no. 10, p. 1709.

    Article  PubMed  Google Scholar 

  24. Volpe, D., Giantin, M.G., Maestri, R., and Frazzitta, G., Comparing the effects of hydrotherapy and land-based therapy on balance in patients with Parkinson’s disease: a randomized controlled pilot study, Clin. Rehabil., 2014, vol. 28, no. 12, p. 1210.

    Article  PubMed  Google Scholar 

  25. Pochmann, D., Peccin, P.K., da Silva, I.R.V., et al., Cytokine modulation in response to acute and chronic aquatic therapy intervention in Parkinson disease individuals: a pilot study, Neurosci. Lett., 2018, vol. 674, p. 30.

    Article  CAS  PubMed  Google Scholar 

  26. Carroll, L.M., Volpe, D., Morris, M.E., et al., Aquatic exercise therapy for people with Parkinson disease: a randomized controlled trial, Arch. Phys. Med. Rehabil., 2017, vol. 98, no. 4, p. 631.

    Article  PubMed  Google Scholar 

  27. Silva, A.Z.D. and Israel, V.L., Effects of dual-task aquatic exercises on functional mobility, balance and gait of individuals with Parkinson’s disease: a randomized clinical trial with a 3-month follow-up, Complementary Ther. Med., 2019, vol. 42, p. 119.

    Article  Google Scholar 

  28. Cronin, N.J., Valtonen, A.M., Waller, B., et al., Effects of short term water immersion on peripheral reflex excitability in hemiplegic and healthy individuals: a preliminary study, J. Musculoskeletal Neuronal Interact., 2016, vol. 16, no. 1, p. 58.

    CAS  Google Scholar 

  29. Terrens, A.F., Soh, S.E., and Morgan, P.E., The efficacy and feasibility of aquatic physiotherapy for people with Parkinson’s disease: a systematic review, Disabil. Rehabil., 2018, vol. 40, no. 24, p. 2847.

    Article  PubMed  Google Scholar 

  30. Navasiolava, N.M., Custaud, M.-A., Tomilovskaya, E.S., et al., Long-term dry immersion: review and prospects, Eur. J. Appl. Physiol., 2011, vol. 111, no. 7, p. 1235.

    Article  CAS  PubMed  Google Scholar 

  31. Tomilovskaya, E., Shigueva, T., Sayenko, D., et al., Dry immersion as a ground-based model of microgravity physiological effects, Front. Physiol., 2019, vol. 10, p. 284.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Demangel, R., Treffel, L., Py, G., et al., Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model, J. Ph-ysiol., 2017, vol. 595, no. 13, p. 4301.

    CAS  Google Scholar 

  33. Watenpaugh, D.E., Analogs of microgravity: head-down tilt and water immersion, J. Appl. Physiol., 2016, vol. 120, no. 8, p. 904.

    Article  PubMed  Google Scholar 

  34. Shelhamer, M., Parabolic flight as a spaceflight analog, J. Appl. Physiol., 2016, vol. 120, no. 12, p. 1442.

    Article  PubMed  Google Scholar 

  35. Ganesan, M., Sathyaprabha, T.N., Pal, P.K., and Gupta, A., Partial body weight-supported treadmill training in patients with Parkinson disease: impact on gait and clinical manifestation, Arch. Phys. Med. Rehabil., 2015, vol. 96, no. 9, p. 1557.

    Article  PubMed  Google Scholar 

  36. Gallasch, E., Kozlovskaya, I., Löscher, W.N., et al., Arm tremor and precision of hand force control in a short and long term flight on the Mir-Space-Station, Acta Astronaut., 1994, vol. 33, p. 49.

    Article  CAS  PubMed  Google Scholar 

  37. Meigal, A., Gerasimova-Meigal, L., Saenko, I., and Subbotina, N., Dry immersion as a novel physical therapeutic intervention for rehabilitation of Parkinson’s disease patients: a feasibility study, Phys. Med. Rehabil. Kurortmed., 2018, vol. 28, no. 5, p. 275.

    Google Scholar 

  38. Plecash, A.R. and Leavitt, B.R., Aquatherapy for neurodegenerative disorders, J. Huntington’s Dis., 2014, vol. 3, no. 1, p. 5.

    Article  Google Scholar 

  39. Miroshnichenko, G.G., Meigal, A., Saenko, L., et al., Parameters of surface electromyogram suggest that dry immersion relieves motor symptoms in patients with Parkinsonism, Front. Neurosci., 2018, vol. 12, p. 667.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Meigal, A.Yu., Gerasimova-Meigal, L.I., Saenko, I.V., et al., Effect of “dry” immersion as an analogue of microgravity on neurological symptoms in parkinsonism, Aviakosm. Ekol. Med., 2017, vol. 51, no. 7, p. 53.

    Google Scholar 

  41. Meigal, A.Yu., Gerasimova-Meigal, L.I., Tret’yakova, O.G., and Saenko, I.V., The motor and cognitive functions in patients with Parkinsonism during the short microgravity effects, Materialy Vserossiiskoi konferentsii s mezhdunarodnym uchestiem posvyashchennoi 170-letiyu so dnya rozhdeniya I.P. Pavlova “Integrativnaya fiziologiya,” 24–26 sentyabrya 2019, Tezisy dokladov (Proc. All-Russ. Conf. with Int. Participation Dedicated to the 170 Anniversary of I.P. Pavlov “Integrative Physiology,” September 24–26, 2-19, Abstracts of Papers), St. Petersburg: Inst. Fiziol. im. I.P. Pavlova, 2019, p. 153.

  42. Gerasimova-Meigal, L. and Meigal, A., Time- and frequency-domain parameters of heart rate variability and blood pressure in Parkinson’s disease patients under dry immersion, Front. Physiol., 2019. https://doi.org/10.3389/conf.fphys.2018.26.00011

  43. Lindenberger, U., Human cognitive aging: Corriger la fortune? Science, 2014, vol. 346, no. 6209, p. 572.

    Article  CAS  PubMed  Google Scholar 

  44. Criaud, M., Poisson, A., Thobois, S., et al., Slowness in movement initiation is associated with proactive inhibitory network dysfunction in Parkinson’s disease, J. Parkinson’s Dis., 2016, vol. 6, no. 2, p. 433.

    Article  Google Scholar 

  45. Avanzino, L., Pelosin, E., Vicario, C.M., et al., Time processing and motor control in movement disorders, Front. Hum. Neurosci., 2016, vol. 10, p. 631.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Vlagsma, T.T., Koerts, J., Tucha, O., et al., Mental slowness in patients with Parkinson’s disease: associations with cognitive functions? J. Clin. Exp. Neuropsychol., 2016, vol. 38, no. 8, p. 844.

    Article  PubMed  Google Scholar 

  47. Rickards, T.A., Cranston, C.C., Touradji, P., and Bechtold, K.T., Embedded performance validity testing in neuropsychological assessment: potential clinical tools, Appl. Neuropsychol.: Adult, 2018, vol. 25, no. 3, p. 219.

    Article  Google Scholar 

  48. Woods, D.L., Wyma, J.M., Yund, E.W., et al., Factors influencing the latency of simple reaction time, Front. Hum. Neurosci., 2015, vol. 9, p. 131.

    PubMed Central  PubMed  Google Scholar 

  49. Woods, D.L., Wyma, J.M., Yund, E.W., et al., Age-related slowing of response selection and production in a visual choice reaction time task, Front. Hum. Neurosci., 2015, vol. 9, p. 193.

    PubMed Central  PubMed  Google Scholar 

  50. Conte, A., Leodori, G., Ferrazzano, G., et al., Somatosensory temporal discrimination threshold in Parkinson’s disease parallels disease severity and duration, Clin. Neurophysiol., 2016, vol. 127, no. 9, p. 2985.

    Article  PubMed  Google Scholar 

  51. Meigal, A., Gerasimova-Meigal, L., Tretjakova, O., et al., Motor-cognitive functions in Parkinson’s disease patients across the program of “dry” immersion: a pilot study, Front. Physiol., 2018. https://doi.org/10.3389/conf.fphys.2018.26.00010

  52. Lazarev, I.E., Tomilovskaya, E.S., and Kozlovskaya, I.B., Resting state brain activity during long-term dry immersion, Aerosp. Med. Hum. Perform., 2018, vol. 89, no. 7, p. 642.

    Article  PubMed  Google Scholar 

  53. Lee, M.S., Lee, M.J., Conte, A., and Berardelli, A., Abnormal somatosensory temporal discrimination in Parkinson’s disease: pathophysiological correlates and role in motor control deficits, Clin. Neurophysiol., 2018, vol. 129, no. 2, p. 442.

    Article  PubMed  Google Scholar 

  54. Acket, B., Amirova, L., Gerdelat, A., et al., Dry immersion as a model of deafferentation: a neurophysiology study using somatosensory evoked potentials, PLoS One, 2018, vol. 13, no. 8, p. e0201704.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Education of Russia (State Contract no. 0752-2020-0007 to AM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Meigal.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. The protocol of the study was approved by the Committee for Ethics, Health and Social Development Ministry of the Republic of Karelia and the Petrozavodsk State University (Protocol no. 31 of December 18, 2014). Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by N. Tarasyuk

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meigal, A.Y., Gerasimova-Meigal, L.I. & Saenko, I.V. Physiological Reactions of Patients with Parkinsonism to Simulated Microgravity Using “Dry” Immersion: A Pilot Study. Hum Physiol 46, 579–586 (2020). https://doi.org/10.1134/S0362119720050096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720050096

Keywords:

  • microgravity
  • “dry” immersion
  • Parkinson’s disease
  • muscle rigidity
  • muscle tone
  • tremor
  • heart rate variability
  • autonomic regulation
  • reaction time